forked from mindspore-Ecosystem/mindspore
223 lines
8.6 KiB
Python
223 lines
8.6 KiB
Python
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test SummaryCollector."""
|
|
import os
|
|
import re
|
|
import shutil
|
|
import tempfile
|
|
from collections import Counter
|
|
|
|
import pytest
|
|
|
|
from mindspore import nn, Tensor, context
|
|
from mindspore.common.initializer import Normal
|
|
from mindspore.nn.metrics import Loss
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train import Model
|
|
from mindspore.train.callback import SummaryCollector
|
|
from tests.st.summary.dataset import create_mnist_dataset
|
|
from tests.summary_utils import SummaryReader
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
"""
|
|
Lenet network
|
|
|
|
Args:
|
|
num_class (int): Number of classes. Default: 10.
|
|
num_channel (int): Number of channels. Default: 1.
|
|
|
|
Returns:
|
|
Tensor, output tensor
|
|
Examples:
|
|
>>> LeNet(num_class=10)
|
|
|
|
"""
|
|
|
|
def __init__(self, num_class=10, num_channel=1, include_top=True):
|
|
super(LeNet5, self).__init__()
|
|
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
|
|
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
|
self.relu = nn.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.include_top = include_top
|
|
if self.include_top:
|
|
self.flatten = nn.Flatten()
|
|
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
|
|
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
|
|
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
|
|
|
|
self.scalar_summary = P.ScalarSummary()
|
|
self.image_summary = P.ImageSummary()
|
|
self.histogram_summary = P.HistogramSummary()
|
|
self.tensor_summary = P.TensorSummary()
|
|
self.channel = Tensor(num_channel)
|
|
|
|
def construct(self, x):
|
|
"""construct."""
|
|
self.image_summary('image', x)
|
|
x = self.conv1(x)
|
|
self.histogram_summary('histogram', x)
|
|
x = self.relu(x)
|
|
self.tensor_summary('tensor', x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
self.scalar_summary('scalar', self.channel)
|
|
x = self.conv2(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
if not self.include_top:
|
|
return x
|
|
x = self.flatten(x)
|
|
x = self.relu(self.fc1(x))
|
|
x = self.relu(self.fc2(x))
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
class TestSummary:
|
|
"""Test summary collector the basic function."""
|
|
base_summary_dir = ''
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
"""Run before test this class."""
|
|
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
|
|
context.set_context(mode=context.GRAPH_MODE, device_id=device_id)
|
|
cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
|
|
|
|
@classmethod
|
|
def teardown_class(cls):
|
|
"""Run after test this class."""
|
|
if os.path.exists(cls.base_summary_dir):
|
|
shutil.rmtree(cls.base_summary_dir)
|
|
|
|
def _run_network(self, dataset_sink_mode=False, num_samples=2, **kwargs):
|
|
"""run network."""
|
|
lenet = LeNet5()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'loss': Loss()})
|
|
summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
|
|
summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=2, **kwargs)
|
|
|
|
ds_train = create_mnist_dataset("train", num_samples=num_samples)
|
|
model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode)
|
|
|
|
ds_eval = create_mnist_dataset("test")
|
|
model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector])
|
|
return summary_dir
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_summary_with_sink_mode_false(self):
|
|
"""Test summary with sink mode false, and num samples is 64."""
|
|
summary_dir = self._run_network(num_samples=10)
|
|
|
|
tag_list = self._list_summary_tags(summary_dir)
|
|
|
|
expected_tag_set = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
|
|
'fc2.weight/auto', 'input_data/auto', 'loss/auto',
|
|
'histogram', 'image', 'scalar', 'tensor'}
|
|
assert set(expected_tag_set) == set(tag_list)
|
|
|
|
# num samples is 10, batch size is 2, so step is 5, collect freq is 2,
|
|
# SummaryCollector will collect the first step and 2th, 4th step
|
|
tag_count = 3
|
|
for value in Counter(tag_list).values():
|
|
assert value == tag_count
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_summary_with_sink_mode_true(self):
|
|
"""Test summary with sink mode true, and num samples is 64."""
|
|
summary_dir = self._run_network(dataset_sink_mode=True, num_samples=10)
|
|
|
|
tag_list = self._list_summary_tags(summary_dir)
|
|
|
|
# There will not record input data when dataset sink mode is True
|
|
expected_tags = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
|
|
'fc2.weight/auto', 'loss/auto', 'histogram', 'image', 'scalar', 'tensor'}
|
|
assert set(expected_tags) == set(tag_list)
|
|
|
|
tag_count = 1
|
|
for value in Counter(tag_list).values():
|
|
assert value == tag_count
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_summarycollector_user_defind(self):
|
|
"""Test SummaryCollector with user-defined."""
|
|
summary_dir = self._run_network(dataset_sink_mode=True, num_samples=2,
|
|
custom_lineage_data={'test': 'self test'},
|
|
export_options={'tensor_format': 'npy'})
|
|
|
|
tag_list = self._list_summary_tags(summary_dir)
|
|
file_list = self._list_tensor_files(summary_dir)
|
|
# There will not record input data when dataset sink mode is True
|
|
expected_tags = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
|
|
'fc2.weight/auto', 'loss/auto', 'histogram', 'image', 'scalar', 'tensor'}
|
|
assert set(expected_tags) == set(tag_list)
|
|
expected_files = {'tensor_1.npy'}
|
|
assert set(expected_files) == set(file_list)
|
|
|
|
@staticmethod
|
|
def _list_summary_tags(summary_dir):
|
|
"""list summary tags."""
|
|
summary_file_path = ''
|
|
for file in os.listdir(summary_dir):
|
|
if re.search("_MS", file):
|
|
summary_file_path = os.path.join(summary_dir, file)
|
|
break
|
|
assert summary_file_path
|
|
|
|
tags = list()
|
|
with SummaryReader(summary_file_path) as summary_reader:
|
|
|
|
while True:
|
|
summary_event = summary_reader.read_event()
|
|
if not summary_event:
|
|
break
|
|
for value in summary_event.summary.value:
|
|
tags.append(value.tag)
|
|
return tags
|
|
|
|
@staticmethod
|
|
def _list_tensor_files(summary_dir):
|
|
"""list tensor tags."""
|
|
export_file_path = ''
|
|
for file in os.listdir(summary_dir):
|
|
if re.search("export_", file):
|
|
export_file_path = os.path.join(summary_dir, file)
|
|
break
|
|
assert export_file_path
|
|
tensor_file_path = os.path.join(export_file_path, "tensor")
|
|
assert tensor_file_path
|
|
|
|
tensors = list()
|
|
for file in os.listdir(tensor_file_path):
|
|
tensors.append(file)
|
|
|
|
return tensors
|