mindspore/tests/st/summary/test_summary_collector.py

223 lines
8.6 KiB
Python

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test SummaryCollector."""
import os
import re
import shutil
import tempfile
from collections import Counter
import pytest
from mindspore import nn, Tensor, context
from mindspore.common.initializer import Normal
from mindspore.nn.metrics import Loss
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from mindspore.train.callback import SummaryCollector
from tests.st.summary.dataset import create_mnist_dataset
from tests.summary_utils import SummaryReader
class LeNet5(nn.Cell):
"""
Lenet network
Args:
num_class (int): Number of classes. Default: 10.
num_channel (int): Number of channels. Default: 1.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def __init__(self, num_class=10, num_channel=1, include_top=True):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.include_top = include_top
if self.include_top:
self.flatten = nn.Flatten()
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.scalar_summary = P.ScalarSummary()
self.image_summary = P.ImageSummary()
self.histogram_summary = P.HistogramSummary()
self.tensor_summary = P.TensorSummary()
self.channel = Tensor(num_channel)
def construct(self, x):
"""construct."""
self.image_summary('image', x)
x = self.conv1(x)
self.histogram_summary('histogram', x)
x = self.relu(x)
self.tensor_summary('tensor', x)
x = self.relu(x)
x = self.max_pool2d(x)
self.scalar_summary('scalar', self.channel)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
if not self.include_top:
return x
x = self.flatten(x)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
class TestSummary:
"""Test summary collector the basic function."""
base_summary_dir = ''
@classmethod
def setup_class(cls):
"""Run before test this class."""
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
context.set_context(mode=context.GRAPH_MODE, device_id=device_id)
cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
@classmethod
def teardown_class(cls):
"""Run after test this class."""
if os.path.exists(cls.base_summary_dir):
shutil.rmtree(cls.base_summary_dir)
def _run_network(self, dataset_sink_mode=False, num_samples=2, **kwargs):
"""run network."""
lenet = LeNet5()
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'loss': Loss()})
summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=2, **kwargs)
ds_train = create_mnist_dataset("train", num_samples=num_samples)
model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode)
ds_eval = create_mnist_dataset("test")
model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector])
return summary_dir
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_summary_with_sink_mode_false(self):
"""Test summary with sink mode false, and num samples is 64."""
summary_dir = self._run_network(num_samples=10)
tag_list = self._list_summary_tags(summary_dir)
expected_tag_set = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
'fc2.weight/auto', 'input_data/auto', 'loss/auto',
'histogram', 'image', 'scalar', 'tensor'}
assert set(expected_tag_set) == set(tag_list)
# num samples is 10, batch size is 2, so step is 5, collect freq is 2,
# SummaryCollector will collect the first step and 2th, 4th step
tag_count = 3
for value in Counter(tag_list).values():
assert value == tag_count
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_summary_with_sink_mode_true(self):
"""Test summary with sink mode true, and num samples is 64."""
summary_dir = self._run_network(dataset_sink_mode=True, num_samples=10)
tag_list = self._list_summary_tags(summary_dir)
# There will not record input data when dataset sink mode is True
expected_tags = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
'fc2.weight/auto', 'loss/auto', 'histogram', 'image', 'scalar', 'tensor'}
assert set(expected_tags) == set(tag_list)
tag_count = 1
for value in Counter(tag_list).values():
assert value == tag_count
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_summarycollector_user_defind(self):
"""Test SummaryCollector with user-defined."""
summary_dir = self._run_network(dataset_sink_mode=True, num_samples=2,
custom_lineage_data={'test': 'self test'},
export_options={'tensor_format': 'npy'})
tag_list = self._list_summary_tags(summary_dir)
file_list = self._list_tensor_files(summary_dir)
# There will not record input data when dataset sink mode is True
expected_tags = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
'fc2.weight/auto', 'loss/auto', 'histogram', 'image', 'scalar', 'tensor'}
assert set(expected_tags) == set(tag_list)
expected_files = {'tensor_1.npy'}
assert set(expected_files) == set(file_list)
@staticmethod
def _list_summary_tags(summary_dir):
"""list summary tags."""
summary_file_path = ''
for file in os.listdir(summary_dir):
if re.search("_MS", file):
summary_file_path = os.path.join(summary_dir, file)
break
assert summary_file_path
tags = list()
with SummaryReader(summary_file_path) as summary_reader:
while True:
summary_event = summary_reader.read_event()
if not summary_event:
break
for value in summary_event.summary.value:
tags.append(value.tag)
return tags
@staticmethod
def _list_tensor_files(summary_dir):
"""list tensor tags."""
export_file_path = ''
for file in os.listdir(summary_dir):
if re.search("export_", file):
export_file_path = os.path.join(summary_dir, file)
break
assert export_file_path
tensor_file_path = os.path.join(export_file_path, "tensor")
assert tensor_file_path
tensors = list()
for file in os.listdir(tensor_file_path):
tensors.append(file)
return tensors