mindspore/tests/st/probability/distribution/test_gamma_pynative.py

50 lines
1.7 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for gamma distribution"""
import pytest
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype as ms
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class GammaMean(nn.Cell):
def __init__(self, concentration, rate, seed=10, dtype=ms.float32, name='Gamma'):
super().__init__()
self.b = msd.Gamma(concentration, rate, seed, dtype, name)
def construct(self):
out1 = self.b.mean()
out2 = self.b.mode()
out3 = self.b.var()
out4 = self.b.entropy()
out5 = self.b.sd()
return out1, out2, out3, out4, out5
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_probability_gamma_mean_cdoncentration_rate_rand_2_ndarray():
concentration = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
rate = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
net = GammaMean(concentration, rate)
net()