forked from mindspore-Ecosystem/mindspore
309 lines
7.6 KiB
Python
309 lines
7.6 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test cases for cat distribution"""
|
|
import numpy as np
|
|
import pytest
|
|
from scipy import stats
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
import mindspore.nn.probability.distribution as msd
|
|
from mindspore import Tensor
|
|
from mindspore import dtype
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
|
|
class Prob(nn.Cell):
|
|
"""
|
|
Test class: probability of categorical distribution.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(Prob, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self, x_):
|
|
return self.c.prob(x_)
|
|
|
|
|
|
def test_pmf():
|
|
"""
|
|
Test pmf.
|
|
"""
|
|
expect_pmf = [0.7, 0.3, 0.7, 0.3, 0.3]
|
|
pmf = Prob()
|
|
x_ = Tensor(np.array([0, 1, 0, 1, 1]).astype(
|
|
np.int32), dtype=dtype.float32)
|
|
output = pmf(x_)
|
|
tol = 1e-6
|
|
assert (np.abs(output.asnumpy() - expect_pmf) < tol).all()
|
|
|
|
|
|
class LogProb(nn.Cell):
|
|
"""
|
|
Test class: log probability of categorical distribution.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(LogProb, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self, x_):
|
|
return self.c.log_prob(x_)
|
|
|
|
|
|
def test_log_likelihood():
|
|
"""
|
|
Test log_pmf.
|
|
"""
|
|
expect_logpmf = np.log([0.7, 0.3, 0.7, 0.3, 0.3])
|
|
logprob = LogProb()
|
|
x_ = Tensor(np.array([0, 1, 0, 1, 1]).astype(
|
|
np.int32), dtype=dtype.float32)
|
|
output = logprob(x_)
|
|
tol = 1e-6
|
|
assert (np.abs(output.asnumpy() - expect_logpmf) < tol).all()
|
|
|
|
|
|
class KL(nn.Cell):
|
|
"""
|
|
Test class: kl_loss between categorical distributions.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(KL, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self, x_):
|
|
return self.c.kl_loss('Categorical', x_)
|
|
|
|
|
|
def test_kl_loss():
|
|
"""
|
|
Test kl_loss.
|
|
"""
|
|
kl_loss = KL()
|
|
output = kl_loss(Tensor([0.7, 0.3], dtype=dtype.float32))
|
|
tol = 1e-6
|
|
assert (np.abs(output.asnumpy()) < tol).all()
|
|
|
|
|
|
class Sampling(nn.Cell):
|
|
"""
|
|
Test class: sampling of categorical distribution.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(Sampling, self).__init__()
|
|
self.c = msd.Categorical([0.2, 0.1, 0.7], dtype=dtype.int32)
|
|
self.shape = (2, 3)
|
|
|
|
def construct(self):
|
|
return self.c.sample(self.shape)
|
|
|
|
|
|
def test_sample():
|
|
"""
|
|
Test sample.
|
|
"""
|
|
with pytest.raises(NotImplementedError):
|
|
sample = Sampling()
|
|
sample()
|
|
|
|
|
|
class Basics(nn.Cell):
|
|
"""
|
|
Test class: mean/var/mode of categorical distribution.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(Basics, self).__init__()
|
|
self.c = msd.Categorical([0.2, 0.1, 0.7], dtype=dtype.int32)
|
|
|
|
def construct(self):
|
|
return self.c.mean(), self.c.var(), self.c.mode()
|
|
|
|
|
|
def test_basics():
|
|
"""
|
|
Test mean/variance/mode.
|
|
"""
|
|
basics = Basics()
|
|
mean, var, mode = basics()
|
|
expect_mean = 0 * 0.2 + 1 * 0.1 + 2 * 0.7
|
|
expect_var = 0 * 0.2 + 1 * 0.1 + 4 * 0.7 - (expect_mean * expect_mean)
|
|
expect_mode = 2
|
|
tol = 1e-6
|
|
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
|
|
assert (np.abs(var.asnumpy() - expect_var) < tol).all()
|
|
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
|
|
|
|
|
|
class CDF(nn.Cell):
|
|
"""
|
|
Test class: cdf of categorical distributions.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(CDF, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self, x_):
|
|
return self.c.cdf(x_)
|
|
|
|
|
|
def test_cdf():
|
|
"""
|
|
Test cdf.
|
|
"""
|
|
expect_cdf = [0.7, 0.7, 1, 0.7, 1]
|
|
x_ = Tensor(np.array([0, 0, 1, 0, 1]).astype(
|
|
np.int32), dtype=dtype.float32)
|
|
cdf = CDF()
|
|
output = cdf(x_)
|
|
tol = 1e-6
|
|
assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
|
|
|
|
|
|
class LogCDF(nn.Cell):
|
|
"""
|
|
Test class: log cdf of categorical distributions.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(LogCDF, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self, x_):
|
|
return self.c.log_cdf(x_)
|
|
|
|
|
|
def test_logcdf():
|
|
"""
|
|
Test log_cdf.
|
|
"""
|
|
expect_logcdf = np.log([0.7, 0.7, 1, 0.7, 1])
|
|
x_ = Tensor(np.array([0, 0, 1, 0, 1]).astype(
|
|
np.int32), dtype=dtype.float32)
|
|
logcdf = LogCDF()
|
|
output = logcdf(x_)
|
|
tol = 1e-6
|
|
assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
|
|
|
|
|
|
class SF(nn.Cell):
|
|
"""
|
|
Test class: survival function of categorical distributions.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(SF, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self, x_):
|
|
return self.c.survival_function(x_)
|
|
|
|
|
|
def test_survival():
|
|
"""
|
|
Test survival function.
|
|
"""
|
|
expect_survival = [0.3, 0., 0., 0.3, 0.3]
|
|
x_ = Tensor(np.array([0, 1, 1, 0, 0]).astype(
|
|
np.int32), dtype=dtype.float32)
|
|
sf = SF()
|
|
output = sf(x_)
|
|
tol = 1e-6
|
|
assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
|
|
|
|
|
|
class LogSF(nn.Cell):
|
|
"""
|
|
Test class: log survival function of categorical distributions.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(LogSF, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self, x_):
|
|
return self.c.log_survival(x_)
|
|
|
|
|
|
def test_log_survival():
|
|
"""
|
|
Test log survival function.
|
|
"""
|
|
expect_logsurvival = np.log([1., 0.3, 0.3, 0.3, 0.3])
|
|
x_ = Tensor(np.array([-2, 0, 0, 0.5, 0.5]
|
|
).astype(np.float32), dtype=dtype.float32)
|
|
log_sf = LogSF()
|
|
output = log_sf(x_)
|
|
tol = 1e-6
|
|
assert (np.abs(output.asnumpy() - expect_logsurvival) < tol).all()
|
|
|
|
|
|
class EntropyH(nn.Cell):
|
|
"""
|
|
Test class: entropy of categorical distributions.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(EntropyH, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self):
|
|
return self.c.entropy()
|
|
|
|
|
|
def test_entropy():
|
|
"""
|
|
Test entropy.
|
|
"""
|
|
cat_benchmark = stats.multinomial(n=1, p=[0.7, 0.3])
|
|
expect_entropy = cat_benchmark.entropy().astype(np.float32)
|
|
entropy = EntropyH()
|
|
output = entropy()
|
|
tol = 1e-6
|
|
assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
|
|
|
|
|
|
class CrossEntropy(nn.Cell):
|
|
"""
|
|
Test class: cross entropy between categorical distributions.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(CrossEntropy, self).__init__()
|
|
self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
|
|
|
|
def construct(self, x_):
|
|
entropy = self.c.entropy()
|
|
kl_loss = self.c.kl_loss('Categorical', x_)
|
|
h_sum_kl = entropy + kl_loss
|
|
cross_entropy = self.c.cross_entropy('Categorical', x_)
|
|
return h_sum_kl - cross_entropy
|
|
|
|
|
|
def test_cross_entropy():
|
|
"""
|
|
Test cross_entropy.
|
|
"""
|
|
cross_entropy = CrossEntropy()
|
|
prob = Tensor([0.7, 0.3], dtype=dtype.float32)
|
|
diff = cross_entropy(prob)
|
|
tol = 1e-6
|
|
assert (np.abs(diff.asnumpy()) < tol).all()
|