forked from mindspore-Ecosystem/mindspore
235 lines
8.8 KiB
Python
235 lines
8.8 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.c_transforms as C
|
|
import mindspore.dataset.vision.c_transforms as CV
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, ParameterTuple
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.dataset.vision import Inter
|
|
from mindspore.nn import Dense, TrainOneStepCell, WithLossCell, ForwardValueAndGrad
|
|
from mindspore.nn.metrics import Accuracy
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import functional as F
|
|
from mindspore.train import Model
|
|
from mindspore.train.callback import LossMonitor
|
|
from mindspore.common.initializer import TruncatedNormal
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|
"""weight initial for conv layer"""
|
|
weight = weight_variable()
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
|
weight_init=weight, has_bias=False, pad_mode="valid")
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
"""weight initial for fc layer"""
|
|
weight = weight_variable()
|
|
bias = weight_variable()
|
|
return nn.Dense(input_channels, out_channels, weight, bias)
|
|
|
|
|
|
def weight_variable():
|
|
"""weight initial"""
|
|
return TruncatedNormal(0.02)
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
def __init__(self, num_class=10, channel=1):
|
|
super(LeNet5, self).__init__()
|
|
self.num_class = num_class
|
|
self.conv1 = conv(channel, 6, 5)
|
|
self.conv2 = conv(6, 16, 5)
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
|
self.fc2 = fc_with_initialize(120, 84)
|
|
self.fc3 = fc_with_initialize(84, self.num_class)
|
|
self.relu = nn.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.flatten = nn.Flatten()
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.conv2(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.flatten(x)
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = self.fc2(x)
|
|
x = self.relu(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
class LeNet(nn.Cell):
|
|
def __init__(self):
|
|
super(LeNet, self).__init__()
|
|
self.relu = P.ReLU()
|
|
self.batch_size = 1
|
|
weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
|
|
weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
|
|
self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
|
|
self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
|
|
|
|
self.reshape = P.Reshape()
|
|
self.reshape1 = P.Reshape()
|
|
|
|
self.fc1 = Dense(400, 120)
|
|
self.fc2 = Dense(120, 84)
|
|
self.fc3 = Dense(84, 10)
|
|
|
|
def construct(self, input_x):
|
|
output = self.conv1(input_x)
|
|
output = self.relu(output)
|
|
output = self.pool(output)
|
|
output = self.conv2(output)
|
|
output = self.relu(output)
|
|
output = self.pool(output)
|
|
output = self.reshape(output, (self.batch_size, -1))
|
|
output = self.fc1(output)
|
|
output = self.fc2(output)
|
|
output = self.fc3(output)
|
|
return output
|
|
|
|
|
|
def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
|
|
lr = []
|
|
for step in range(total_steps):
|
|
lr_ = base_lr * gamma ** (step // gap)
|
|
lr.append(lr_)
|
|
return Tensor(np.array(lr), dtype)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_train_lenet():
|
|
epoch = 100
|
|
net = LeNet()
|
|
momentum = 0.9
|
|
learning_rate = multisteplr(epoch, 30)
|
|
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
|
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
net_with_criterion = WithLossCell(net, criterion)
|
|
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
|
train_network.set_train()
|
|
losses = []
|
|
for i in range(epoch):
|
|
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
|
|
loss = train_network(data, label).asnumpy()
|
|
losses.append(loss)
|
|
assert losses[-1] < 0.01
|
|
|
|
|
|
def create_dataset(data_path, batch_size=32, repeat_size=1,
|
|
num_parallel_workers=1):
|
|
"""
|
|
create dataset for train or test
|
|
"""
|
|
# define dataset
|
|
mnist_ds = ds.MnistDataset(data_path)
|
|
|
|
resize_height, resize_width = 32, 32
|
|
rescale = 1.0 / 255.0
|
|
shift = 0.0
|
|
rescale_nml = 1 / 0.3081
|
|
shift_nml = -1 * 0.1307 / 0.3081
|
|
|
|
# define map operations
|
|
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
|
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
|
rescale_op = CV.Rescale(rescale, shift)
|
|
hwc2chw_op = CV.HWC2CHW()
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
|
|
# apply map operations on images
|
|
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
|
|
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
# apply DatasetOps
|
|
buffer_size = 10000
|
|
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
|
|
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
|
mnist_ds = mnist_ds.repeat(repeat_size)
|
|
|
|
return mnist_ds
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_train_and_eval_lenet():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
network = LeNet5(10)
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
|
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
|
|
|
print("============== Starting Training ==============")
|
|
ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
|
|
model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=True)
|
|
|
|
print("============== Starting Testing ==============")
|
|
ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1)
|
|
acc = model.eval(ds_eval, dataset_sink_mode=True)
|
|
print("============== {} ==============".format(acc))
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_train_lenet_with_new_interface(num_classes=10, epoch=20, batch_size=32):
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
network = LeNet5(num_classes)
|
|
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
net_with_criterion = WithLossCell(network, criterion)
|
|
net_with_criterion.set_train()
|
|
|
|
weights = ParameterTuple(network.trainable_params())
|
|
optimizer = nn.Momentum(weights, 0.1, 0.9)
|
|
|
|
train_network = ForwardValueAndGrad(network=net_with_criterion, weights=weights, get_by_list=True, sens_param=True)
|
|
losses = []
|
|
for i in range(0, epoch):
|
|
data = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.ones([batch_size]).astype(np.int32))
|
|
sens = Tensor(np.ones([1]).astype(np.float32))
|
|
loss, grads = train_network(data, label, sens)
|
|
grads = F.identity(grads)
|
|
optimizer(grads)
|
|
losses.append(loss)
|
|
assert losses[-1].asnumpy() < 0.01
|
|
assert losses[-1].asnumpy() > 0.001
|