mindspore/tests/st/networks/test_gpu_lenet.py

235 lines
8.8 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
import pytest
import mindspore.context as context
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
import mindspore.nn as nn
from mindspore import Tensor, ParameterTuple
from mindspore.common import dtype as mstype
from mindspore.dataset.vision import Inter
from mindspore.nn import Dense, TrainOneStepCell, WithLossCell, ForwardValueAndGrad
from mindspore.nn.metrics import Accuracy
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
from mindspore.common.initializer import TruncatedNormal
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
class LeNet(nn.Cell):
def __init__(self):
super(LeNet, self).__init__()
self.relu = P.ReLU()
self.batch_size = 1
weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
self.reshape = P.Reshape()
self.reshape1 = P.Reshape()
self.fc1 = Dense(400, 120)
self.fc2 = Dense(120, 84)
self.fc3 = Dense(84, 10)
def construct(self, input_x):
output = self.conv1(input_x)
output = self.relu(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu(output)
output = self.pool(output)
output = self.reshape(output, (self.batch_size, -1))
output = self.fc1(output)
output = self.fc2(output)
output = self.fc3(output)
return output
def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
lr = []
for step in range(total_steps):
lr_ = base_lr * gamma ** (step // gap)
lr.append(lr_)
return Tensor(np.array(lr), dtype)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_train_lenet():
epoch = 100
net = LeNet()
momentum = 0.9
learning_rate = multisteplr(epoch, 30)
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train()
losses = []
for i in range(epoch):
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
loss = train_network(data, label).asnumpy()
losses.append(loss)
assert losses[-1] < 0.01
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
"""
create dataset for train or test
"""
# define dataset
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_train_and_eval_lenet():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
network = LeNet5(10)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
print("============== Starting Training ==============")
ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=True)
print("============== Starting Testing ==============")
ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1)
acc = model.eval(ds_eval, dataset_sink_mode=True)
print("============== {} ==============".format(acc))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_train_lenet_with_new_interface(num_classes=10, epoch=20, batch_size=32):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
network = LeNet5(num_classes)
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
net_with_criterion = WithLossCell(network, criterion)
net_with_criterion.set_train()
weights = ParameterTuple(network.trainable_params())
optimizer = nn.Momentum(weights, 0.1, 0.9)
train_network = ForwardValueAndGrad(network=net_with_criterion, weights=weights, get_by_list=True, sens_param=True)
losses = []
for i in range(0, epoch):
data = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([batch_size]).astype(np.int32))
sens = Tensor(np.ones([1]).astype(np.float32))
loss, grads = train_network(data, label, sens)
grads = F.identity(grads)
optimizer(grads)
losses.append(loss)
assert losses[-1].asnumpy() < 0.01
assert losses[-1].asnumpy() > 0.001