forked from mindspore-Ecosystem/mindspore
71 lines
2.0 KiB
Python
71 lines
2.0 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
|
|
class Net1(nn.Cell):
|
|
def __init__(self):
|
|
super(Net1, self).__init__()
|
|
self.relu1 = P.ReLU()
|
|
self.relu2 = P.ReLU()
|
|
self.mul = P.Mul()
|
|
self.depend = P.Depend()
|
|
|
|
def construct(self, x, y):
|
|
a = self.relu1(x)
|
|
y = self.depend(y, a)
|
|
b = self.relu2(y)
|
|
c = self.mul(a, b)
|
|
return c, a
|
|
|
|
|
|
class Net2(nn.Cell):
|
|
def __init__(self):
|
|
super(Net2, self).__init__()
|
|
self.relu1 = P.ReLU()
|
|
self.relu2 = P.ReLU().add_prim_attr("primitive_target", "CPU")
|
|
self.mul = P.Mul()
|
|
self.depend = P.Depend()
|
|
|
|
def construct(self, x, y):
|
|
a = self.relu1(x)
|
|
y = self.depend(y, a)
|
|
b = self.relu2(y)
|
|
c = self.mul(a, b)
|
|
return c, a
|
|
|
|
|
|
def test_net():
|
|
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
|
y = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
|
net1 = Net1()
|
|
output1 = net1(Tensor(x), Tensor(y))
|
|
|
|
net2 = Net2()
|
|
output2 = net2(Tensor(x), Tensor(y))
|
|
assert np.allclose(output1[0].asnumpy(), output2[0].asnumpy())
|
|
print("##success##")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_net()
|