forked from mindspore-Ecosystem/mindspore
80 lines
2.8 KiB
C++
80 lines
2.8 KiB
C++
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <string>
|
|
#include <vector>
|
|
#include "common/common_test.h"
|
|
#include "include/api/model.h"
|
|
#include "include/api/serialization.h"
|
|
#include "include/api/context.h"
|
|
|
|
using namespace mindspore;
|
|
|
|
static const char tensor_add_file[] = "/home/workspace/mindspore_dataset/mindir/add/add.mindir";
|
|
static const std::vector<float> input_data_1 = {1, 2, 3, 4};
|
|
static const std::vector<float> input_data_2 = {2, 3, 4, 5};
|
|
|
|
class TestAdd : public ST::Common {
|
|
public:
|
|
TestAdd() {}
|
|
};
|
|
|
|
TEST_F(TestAdd, InferMindIR) {
|
|
auto context = ContextAutoSet();
|
|
|
|
Graph graph;
|
|
ASSERT_TRUE(Serialization::Load(tensor_add_file, ModelType::kMindIR, &graph));
|
|
Model tensor_add;
|
|
ASSERT_TRUE(tensor_add.Build(GraphCell(graph), context) == kSuccess);
|
|
|
|
// get model inputs
|
|
std::vector<MSTensor> origin_inputs = tensor_add.GetInputs();
|
|
ASSERT_EQ(origin_inputs.size(), 2);
|
|
|
|
// prepare input
|
|
std::vector<MSTensor> outputs;
|
|
std::vector<MSTensor> inputs;
|
|
inputs.emplace_back(origin_inputs[0].Name(), origin_inputs[0].DataType(), origin_inputs[0].Shape(),
|
|
input_data_1.data(), sizeof(float) * input_data_1.size());
|
|
inputs.emplace_back(origin_inputs[1].Name(), origin_inputs[1].DataType(), origin_inputs[1].Shape(),
|
|
input_data_2.data(), sizeof(float) * input_data_2.size());
|
|
|
|
// infer
|
|
ASSERT_TRUE(tensor_add.Predict(inputs, &outputs) == kSuccess);
|
|
|
|
// assert input
|
|
inputs = tensor_add.GetInputs();
|
|
ASSERT_EQ(inputs.size(), 2);
|
|
auto after_input_data_1 = inputs[0].Data();
|
|
auto after_input_data_2 = inputs[1].Data();
|
|
const float *p = reinterpret_cast<const float *>(after_input_data_1.get());
|
|
for (size_t i = 0; i < inputs[0].DataSize() / sizeof(float); ++i) {
|
|
ASSERT_LE(std::abs(p[i] - input_data_1[i]), 1e-4);
|
|
}
|
|
p = reinterpret_cast<const float *>(after_input_data_2.get());
|
|
for (size_t i = 0; i < inputs[0].DataSize() / sizeof(float); ++i) {
|
|
ASSERT_LE(std::abs(p[i] - input_data_2[i]), 1e-4);
|
|
}
|
|
|
|
// assert output
|
|
for (auto &buffer : outputs) {
|
|
auto buffer_data = buffer.Data();
|
|
p = reinterpret_cast<const float *>(buffer_data.get());
|
|
for (size_t i = 0; i < buffer.DataSize() / sizeof(float); ++i) {
|
|
ASSERT_LE(std::abs(p[i] - (input_data_1[i] + input_data_2[i])), 1e-4);
|
|
}
|
|
}
|
|
}
|