forked from mindspore-Ecosystem/mindspore
271 lines
8.9 KiB
Python
271 lines
8.9 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x):
|
|
predict = self.network(x)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x):
|
|
return grad_all(self.network)(x)
|
|
|
|
def test_reshape_unexpand():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.mul = P.Mul().shard(((1, 8), (1, 1, 8)))
|
|
self.mul_weight = Parameter(Tensor(np.ones([96, 128]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x):
|
|
weight = self.reshape(self.mul_weight, (1, 128, 96))
|
|
out = self.mul(x, weight)
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_unexpand_1():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.mul = P.Mul().shard(((1, 1, 8), (1, 8)))
|
|
self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, data):
|
|
x = self.reshape(self.mul_weight, (1, 128, 96))
|
|
out = self.mul(x, self.mul_weight)
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_unexpand_2():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.mul = P.Mul().shard(((1, 4, 2), (4, 2)))
|
|
self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, data):
|
|
x = self.reshape(self.mul_weight, (1, 128, 96))
|
|
out = self.mul(x, self.mul_weight)
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_unexpand_3():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.relu1 = P.ReLU().shard(((4, 1),))
|
|
self.relu2 = P.ReLU().shard(((1, 4),))
|
|
|
|
def construct(self, data):
|
|
x = self.relu1(data)
|
|
x = self.reshape(x, (3, 4))
|
|
x = self.relu2(x)
|
|
return x
|
|
|
|
size = 4
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_unexpand_4():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.relu1 = P.ReLU().shard(((4, 1),))
|
|
self.relu2 = P.ReLU().shard(((1, 2, 2),))
|
|
|
|
def construct(self, data):
|
|
x = self.relu1(data)
|
|
x = self.reshape(x, (3, 2, 2))
|
|
x = self.relu2(x)
|
|
return x
|
|
|
|
size = 4
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_unexpand_5():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.relu1 = P.ReLU().shard(((2, 2, 1),))
|
|
self.relu2 = P.ReLU().shard(((1, 4),))
|
|
|
|
def construct(self, data):
|
|
x = self.relu1(data)
|
|
x = self.reshape(x, (3, 4))
|
|
x = self.relu2(x)
|
|
return x
|
|
|
|
size = 4
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([2, 2, 3]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_unexpand_6():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.relu1 = P.ReLU().shard(((2, 1),))
|
|
self.relu2 = P.ReLU().shard(((1, 1, 4),))
|
|
|
|
def construct(self, data):
|
|
x = self.relu1(data)
|
|
x = self.reshape(x, (1, 3, 4))
|
|
x = self.relu2(x)
|
|
return x
|
|
|
|
size = 4
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_unexpand_7():
|
|
class Net(nn.Cell):
|
|
def __init__(self, in_channel=3, out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
|
|
mul_size=(32, 1, 220, 220)):
|
|
super().__init__()
|
|
mul_np = np.full(mul_size, 0.5, dtype=np.float32)
|
|
self.mul_weight = Parameter(Tensor(mul_np), name="mul_weight")
|
|
self.mul = P.Mul()
|
|
self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
|
|
kernel_size=5, has_bias=True, weight_init='ones',
|
|
bias_init='ones', pad_mode='valid')
|
|
self.conv.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1)))
|
|
self.softmax = nn.Softmax(axis=axis)
|
|
self.relu = nn.ReLU()
|
|
self.reshape = P.Reshape()
|
|
self.input_shape = input_shape
|
|
|
|
def construct(self, inputs):
|
|
x = self.conv(inputs)
|
|
x = self.softmax(x)
|
|
x = self.relu(x)
|
|
x = self.mul(x, self.mul_weight)
|
|
x = self.reshape(x, self.input_shape)
|
|
return x
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
x = Tensor(np.ones([32, 3, 224, 224]), dtype=ms.float32)
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_unexpand_8():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.mul = P.Mul().shard(((1, 4, 2), (4, 2)))
|
|
self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, data):
|
|
x = self.reshape(self.mul_weight, (1, 128, 96))
|
|
out = self.mul(x, self.mul_weight)
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|