mindspore/tests/ut/python/parallel/test_parameter_merge.py

106 lines
3.6 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, weight, w2, begin, end, strides, strategy1=None, strategy2=None, mask=0):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.strided_slice = P.StridedSlice(begin_mask=mask).shard(strategy2)
self.weight = Parameter(weight, "w1")
self.mul2 = P.Mul()
self.weight2 = Parameter(w2, "w2")
self.begin = begin
self.end = end
self.strides = strides
def construct(self, x, b):
out = self.strided_slice(
self.weight, self.begin, self.end, self.strides)
out = self.mul(x, out)
out = self.mul2(out, self.weight2)
return out
_x = Tensor(np.ones([16, 64, 1]), dtype=ms.float32)
_b = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([256, 64, 32]), dtype=ms.float32)
_w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
def clean_all_ckpt_files(folder_path):
if os.path.exists(folder_path):
for file_name in os.listdir(folder_path):
if file_name.endswith('.ckpt') or file_name.endswith('.meta'):
os.remove(os.path.join(folder_path, file_name))
def compile_net(net):
context.set_context(save_graphs=False)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, optimizer=opt)
ckpt_config = CheckpointConfig(keep_checkpoint_max=1)
ckpt_path = "./parallel_ckpt"
ckpt_cb = ModelCheckpoint(prefix="parallel", directory=ckpt_path, config=ckpt_config)
model.train(epoch_size, dataset, dataset_sink_mode=False, callbacks=[ckpt_cb])
assert len(model._train_network.parallel_parameter_merge_net_dict) == 4
clean_all_ckpt_files(ckpt_path)
context.reset_auto_parallel_context()
def test_stridedslice_parameter():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 1), (1, 4, 2))
strategy2 = ((1, 4, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1),
strategy1, strategy2)
compile_net(net)