forked from mindspore-Ecosystem/mindspore
60 lines
1.8 KiB
Python
60 lines
1.8 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore import context
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = P.SoftmaxCrossEntropyWithLogits()
|
|
self.network = network
|
|
|
|
def construct(self, x, b):
|
|
predict = self.network(x)
|
|
return self.loss(predict, b)[0]
|
|
|
|
|
|
def test_parameter_init():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, weight):
|
|
super().__init__()
|
|
self.weight = Parameter(weight, "w1")
|
|
self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1)
|
|
|
|
def construct(self, x):
|
|
out = self.matmul(x, self.weight)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=2, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((1, 1), (2, 1))
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
weight = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
net = Net(strategy1, weight)
|
|
net(x,)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_parameter_init()
|