forked from mindspore-Ecosystem/mindspore
177 lines
5.6 KiB
Python
177 lines
5.6 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from mindspore.nn.wrap.cell_wrapper import _VirtualDatasetCell
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network, strategy3, strategy4, axis):
|
|
super(NetWithLoss, self).__init__()
|
|
self.one_hot = P.OneHot(axis=axis).shard(strategy3)
|
|
self.on_value = Tensor(2.0, ms.float32)
|
|
self.off_value = Tensor(1.0, ms.float32)
|
|
self.loss = P.SoftmaxCrossEntropyWithLogits().shard(strategy4)
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
predict = self.network(x, y)
|
|
label = self.one_hot(b, 64, self.on_value, self.off_value)
|
|
return self.loss(predict, label)[0]
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
return grad_all(self.network)(x, y, b)
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.gelu = P.GeLU().shard(strategy2)
|
|
|
|
def construct(self, x, y):
|
|
out = self.matmul(x, y)
|
|
out = self.gelu(out)
|
|
return out
|
|
|
|
|
|
def compile_graph(strategy1, strategy2, strategy3, strategy4, auto=False, onthot_axis=-1):
|
|
net = GradWrap(_VirtualDatasetCell(NetWithLoss(Net(strategy1, strategy2), strategy3, strategy4, axis=onthot_axis)))
|
|
net.set_auto_parallel()
|
|
if auto:
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
else:
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64]), dtype=ms.int32)
|
|
net.set_train()
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
|
def test_onehot_model_parallel():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy1 = ((2, 4), (4, 2))
|
|
strategy2 = ((2, 8),)
|
|
strategy3 = ((1, 16), (), ())
|
|
strategy4 = ((16, 1), (16, 1))
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4)
|
|
|
|
|
|
def test_onehot_batch_parallel():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy1 = ((2, 4), (4, 2))
|
|
strategy2 = ((2, 8),)
|
|
strategy3 = ((16, 1), (), ())
|
|
strategy4 = ((16, 1), (16, 1))
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4)
|
|
|
|
|
|
def test_onehot_batch_parallel_invalid_strategy():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy1 = ((2, 4), (4, 2))
|
|
strategy2 = ((2, 8),)
|
|
strategy3 = ((16,), (), ())
|
|
strategy4 = ((16, 1), (16, 1))
|
|
try:
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4)
|
|
except ValueError:
|
|
pass
|
|
except TypeError:
|
|
pass
|
|
except RuntimeError:
|
|
pass
|
|
|
|
|
|
def test_onehot_repeated_calculation():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy1 = ((2, 4), (4, 2))
|
|
strategy2 = ((2, 8),)
|
|
strategy3 = ((4, 1), (), ())
|
|
strategy4 = ((16, 1), (16, 1))
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4)
|
|
|
|
|
|
def test_onehot_auto():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy1 = None
|
|
strategy2 = None
|
|
strategy3 = None
|
|
strategy4 = None
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4, auto=True)
|
|
|
|
|
|
def test_onehot_batch_parallel_axis0():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy1 = ((2, 4), (4, 2))
|
|
strategy2 = ((2, 8),)
|
|
strategy3 = ((16, 1), (), ())
|
|
strategy4 = ((16, 1), (16, 1))
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)
|
|
|
|
|
|
# auto parallel for onehot axis equal to 0 has not been supported yet
|
|
def test_onehot_batch_parallel_invalid_strategy_axis0():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy1 = ((2, 4), (4, 2))
|
|
strategy2 = ((2, 8),)
|
|
strategy3 = None
|
|
strategy4 = ((16, 1), (16, 1))
|
|
try:
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)
|
|
except ValueError:
|
|
pass
|
|
except TypeError:
|
|
pass
|
|
except RuntimeError:
|
|
pass
|
|
|
|
|
|
def test_onehot_repeated_calculation_axis0():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy1 = ((2, 4), (4, 2))
|
|
strategy2 = ((2, 8),)
|
|
strategy3 = ((4, 1), (), ())
|
|
strategy4 = ((16, 1), (16, 1))
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)
|
|
|
|
|
|
def test_onehot_auto_axis0():
|
|
context.set_auto_parallel_context(device_num=16, global_rank=14)
|
|
strategy1 = None
|
|
strategy2 = None
|
|
strategy3 = None
|
|
strategy4 = None
|
|
compile_graph(strategy1, strategy2, strategy3, strategy4, auto=True, onthot_axis=0)
|