mindspore/tests/ut/python/parallel/test_onehot.py

177 lines
5.6 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.nn.wrap.cell_wrapper import _VirtualDatasetCell
context.set_context(mode=context.GRAPH_MODE)
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network, strategy3, strategy4, axis):
super(NetWithLoss, self).__init__()
self.one_hot = P.OneHot(axis=axis).shard(strategy3)
self.on_value = Tensor(2.0, ms.float32)
self.off_value = Tensor(1.0, ms.float32)
self.loss = P.SoftmaxCrossEntropyWithLogits().shard(strategy4)
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y)
label = self.one_hot(b, 64, self.on_value, self.off_value)
return self.loss(predict, label)[0]
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return grad_all(self.network)(x, y, b)
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.gelu = P.GeLU().shard(strategy2)
def construct(self, x, y):
out = self.matmul(x, y)
out = self.gelu(out)
return out
def compile_graph(strategy1, strategy2, strategy3, strategy4, auto=False, onthot_axis=-1):
net = GradWrap(_VirtualDatasetCell(NetWithLoss(Net(strategy1, strategy2), strategy3, strategy4, axis=onthot_axis)))
net.set_auto_parallel()
if auto:
context.set_auto_parallel_context(parallel_mode="auto_parallel")
else:
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.int32)
net.set_train()
_executor.compile(net, x, y, b)
def test_onehot_model_parallel():
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy1 = ((2, 4), (4, 2))
strategy2 = ((2, 8),)
strategy3 = ((1, 16), (), ())
strategy4 = ((16, 1), (16, 1))
compile_graph(strategy1, strategy2, strategy3, strategy4)
def test_onehot_batch_parallel():
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy1 = ((2, 4), (4, 2))
strategy2 = ((2, 8),)
strategy3 = ((16, 1), (), ())
strategy4 = ((16, 1), (16, 1))
compile_graph(strategy1, strategy2, strategy3, strategy4)
def test_onehot_batch_parallel_invalid_strategy():
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy1 = ((2, 4), (4, 2))
strategy2 = ((2, 8),)
strategy3 = ((16,), (), ())
strategy4 = ((16, 1), (16, 1))
try:
compile_graph(strategy1, strategy2, strategy3, strategy4)
except ValueError:
pass
except TypeError:
pass
except RuntimeError:
pass
def test_onehot_repeated_calculation():
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy1 = ((2, 4), (4, 2))
strategy2 = ((2, 8),)
strategy3 = ((4, 1), (), ())
strategy4 = ((16, 1), (16, 1))
compile_graph(strategy1, strategy2, strategy3, strategy4)
def test_onehot_auto():
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy1 = None
strategy2 = None
strategy3 = None
strategy4 = None
compile_graph(strategy1, strategy2, strategy3, strategy4, auto=True)
def test_onehot_batch_parallel_axis0():
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy1 = ((2, 4), (4, 2))
strategy2 = ((2, 8),)
strategy3 = ((16, 1), (), ())
strategy4 = ((16, 1), (16, 1))
compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)
# auto parallel for onehot axis equal to 0 has not been supported yet
def test_onehot_batch_parallel_invalid_strategy_axis0():
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy1 = ((2, 4), (4, 2))
strategy2 = ((2, 8),)
strategy3 = None
strategy4 = ((16, 1), (16, 1))
try:
compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)
except ValueError:
pass
except TypeError:
pass
except RuntimeError:
pass
def test_onehot_repeated_calculation_axis0():
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy1 = ((2, 4), (4, 2))
strategy2 = ((2, 8),)
strategy3 = ((4, 1), (), ())
strategy4 = ((16, 1), (16, 1))
compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0)
def test_onehot_auto_axis0():
context.set_auto_parallel_context(device_num=16, global_rank=14)
strategy1 = None
strategy2 = None
strategy3 = None
strategy4 = None
compile_graph(strategy1, strategy2, strategy3, strategy4, auto=True, onthot_axis=0)