mindspore/tests/ut/python/parallel/test_multi_field_embedding.py

146 lines
5.5 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore.common.api import _executor
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore import Tensor, context
from mindspore.nn import TrainOneStepCell, Adam
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
@pytest.fixture(name="test_context")
def _test_context():
context.set_context(enable_sparse=True)
yield
context.set_context(enable_sparse=False)
context.reset_auto_parallel_context()
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, z):
return grad_all(self.network)(x, y, z)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, z):
predict = self.network(x, y, z)
return self.loss(predict)
class Net(nn.Cell):
def __init__(self, shape, field_size=10, slice_mode=nn.EmbeddingLookup.BATCH_SLICE, target="Device",
operator='SUM'):
super().__init__()
self.embedding = nn.MultiFieldEmbeddingLookup(vocab_size=32, embedding_size=64, target=target,
field_size=field_size, slice_mode=slice_mode, operator=operator)
self.reshape = P.Reshape()
self.batch_size = shape[0]
def construct(self, x, y, z):
out = self.embedding(x, y, z)
out = self.reshape(out, (self.batch_size, -1))
return out
def compile_net(net, shape):
x = Tensor(np.ones(shape), dtype=ms.int32)
y = Tensor(np.ones(shape), dtype=ms.float32)
z = Tensor(np.ones(shape), dtype=ms.int32)
optimizer = Adam(net.trainable_params(), learning_rate=0.1)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, x, y, z)
context.reset_auto_parallel_context()
def test_embeddinglookup_batch_parallel_sum(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, field_size=10, target='DEVICE'))
compile_net(net, shape)
def test_embeddinglookup_row_parallel_sum(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, field_size=9, slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE, target='DEVICE'))
compile_net(net, shape)
def test_embeddinglookup_column_parallel_sum(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, field_size=10, slice_mode=nn.EmbeddingLookup.TABLE_COLUMN_SLICE, target='DEVICE'))
compile_net(net, shape)
def test_embeddinglookup_batch_parallel_mean(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, field_size=1, target='DEVICE', operator='MEAN'))
compile_net(net, shape)
def test_embeddinglookup_column_parallel_mean(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, target='DEVICE', slice_mode=nn.EmbeddingLookup.TABLE_COLUMN_SLICE, operator='MEAN'))
compile_net(net, shape)
def test_embeddinglookup_row_parallel_mean(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, target='DEVICE', slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE, operator='MEAN'))
compile_net(net, shape)
def test_embeddinglookup_batch_parallel_max(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, target='DEVICE', operator='MAX'))
compile_net(net, shape)
def test_embeddinglookup_column_parallel_max(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, target='DEVICE', slice_mode=nn.EmbeddingLookup.TABLE_COLUMN_SLICE, operator='MAX'))
compile_net(net, shape)
def test_embeddinglookup_row_parallel_max(test_context):
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
shape = [64, 64]
net = NetWithLoss(Net(shape, target='DEVICE', slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE, operator='MAX'))
compile_net(net, shape)