mindspore/tests/ut/python/parallel/test_linear.py

78 lines
2.5 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network, strategy3):
super(NetWithLoss, self).__init__()
self.loss = P.SoftmaxCrossEntropyWithLogits().shard(strategy3)
self.network = network
def construct(self, x, y, bias, label):
predict = self.network(x, y, bias)
return self.loss(predict, label)[0]
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, bias, label):
return grad_all(self.network)(x, y, bias, label)
def test_linear():
class Net(nn.Cell):
def __init__(self, strategy0, strategy1, strategy2):
super().__init__()
self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0)
self.add = P.Add().shard(strategy1)
self.gelu = P.GeLU().shard(strategy2)
def construct(self, x, y, bias):
out = self.fc_nobias(x, y)
out = self.add(out, bias)
out = self.gelu(out)
return out
context.set_auto_parallel_context(device_num=16, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy0 = ((2, 4), (2, 4))
strategy1 = ((2, 4), (4,))
strategy2 = ((2, 8),)
strategy3 = ((16, 1), (16, 1))
net = GradWrap(NetWithLoss(Net(strategy0, strategy1, strategy2), strategy3))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
bias = Tensor(np.ones([64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
net.set_train()
_executor.compile(net, x, y, bias, label)