forked from mindspore-Ecosystem/mindspore
157 lines
5.7 KiB
Python
157 lines
5.7 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from mindspore import context
|
|
import mindspore.nn as nn
|
|
from mindspore.ops import operations as P
|
|
from mindspore import Tensor, Parameter
|
|
import mindspore as ms
|
|
import mindspore.common.api as me
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.common import set_seed
|
|
from hccl_test.manage.api import Hccl
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, weight):
|
|
super().__init__()
|
|
self.weight = Parameter(weight, "w1")
|
|
self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1)
|
|
self.relu = P.ReLU().shard(strategy2)
|
|
|
|
def construct(self, x):
|
|
out = self.matmul(x, self.weight)
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
def check_initializer_weight_slice(init_name="Uniform"):
|
|
def get_slice(rank):
|
|
hccl = Hccl()
|
|
rank_save = hccl.rank_id
|
|
hccl.rank_id = rank
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 1), (4, 1))
|
|
strategy2 = ((2, 4),)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
exe = me._executor
|
|
|
|
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
weight = initializer(init_name, [64, 32], ms.float32)
|
|
net = Net(strategy1, strategy2, weight)
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
|
hccl.rank_id = rank_save
|
|
return net.parameters_dict()['w1'].data.asnumpy()
|
|
|
|
slice0 = get_slice(0)
|
|
slice1 = get_slice(1)
|
|
slice4 = get_slice(4)
|
|
slice_shape = slice0.shape
|
|
|
|
slice0 = slice0.flatten()
|
|
slice1 = slice1.flatten()
|
|
slice4 = slice4.flatten()
|
|
expect_slice_shape = (16, 32)
|
|
|
|
assert expect_slice_shape == slice_shape
|
|
assert all(slice0 == slice4)
|
|
if init_name not in ["One", "Zero"]:
|
|
assert any(slice0 != slice1)
|
|
|
|
initializers = ["Uniform", "Normal", "TruncatedNormal", "HeUniform", "HeNormal", "XavierUniform", "One", "Zero"]
|
|
|
|
def test_initializer_weight_slice():
|
|
for init_name in initializers:
|
|
check_initializer_weight_slice(init_name)
|
|
|
|
def test_wrong_order_set_parallel_mode_with_initializer():
|
|
weight = initializer("Normal", [64, 32], ms.float32)
|
|
strategy1 = ((2, 1), (4, 1))
|
|
strategy2 = ((2, 4),)
|
|
net = Net(strategy1, strategy2, weight)
|
|
exe = me._executor
|
|
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
net.set_auto_parallel()
|
|
with pytest.raises(RuntimeError):
|
|
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
|
|
|
def test_wrong_order_set_same_parallel_mode_with_initializer():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
weight = initializer("Normal", [64, 32], ms.float32)
|
|
strategy1 = ((2, 1), (4, 1))
|
|
strategy2 = ((2, 4),)
|
|
net = Net(strategy1, strategy2, weight)
|
|
exe = me._executor
|
|
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
|
net.set_auto_parallel()
|
|
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
|
|
|
def test_wrong_order_set_parallel_mode_without_initializer():
|
|
weight = Tensor(np.ones([64, 32]), ms.float32)
|
|
strategy1 = ((2, 1), (4, 1))
|
|
strategy2 = ((2, 4),)
|
|
net = Net(strategy1, strategy2, weight)
|
|
exe = me._executor
|
|
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
net.set_auto_parallel()
|
|
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
|
|
|
def test_check_initializer_weight_slice_seed(init_name="Uniform"):
|
|
def get_slice(rank):
|
|
set_seed(1)
|
|
hccl = Hccl()
|
|
rank_save = hccl.rank_id
|
|
hccl.rank_id = rank
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 1), (4, 1))
|
|
strategy2 = ((2, 4),)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
exe = me._executor
|
|
|
|
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
weight = initializer(init_name, [64, 32], ms.float32)
|
|
net = Net(strategy1, strategy2, weight)
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
|
hccl.rank_id = rank_save
|
|
return net.parameters_dict()['w1'].data.asnumpy()
|
|
|
|
|
|
slice0 = get_slice(0)
|
|
slice1 = get_slice(1)
|
|
slice4 = get_slice(4)
|
|
slice_shape = slice0.shape
|
|
|
|
slice0 = slice0.flatten()
|
|
slice1 = slice1.flatten()
|
|
slice4 = slice4.flatten()
|
|
expect_slice_shape = (16, 32)
|
|
|
|
assert expect_slice_shape == slice_shape
|
|
assert all(slice0 == slice4)
|
|
assert all(slice0 == slice1)
|
|
|
|
if __name__ == '__main__':
|
|
test_initializer_weight_slice()
|