mindspore/tests/ut/python/parallel/test_initializer_weight_sli...

157 lines
5.7 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytest
from mindspore import context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor, Parameter
import mindspore as ms
import mindspore.common.api as me
from mindspore.common.initializer import initializer
from mindspore.common import set_seed
from hccl_test.manage.api import Hccl
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, weight):
super().__init__()
self.weight = Parameter(weight, "w1")
self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1)
self.relu = P.ReLU().shard(strategy2)
def construct(self, x):
out = self.matmul(x, self.weight)
out = self.relu(out)
return out
def check_initializer_weight_slice(init_name="Uniform"):
def get_slice(rank):
hccl = Hccl()
rank_save = hccl.rank_id
hccl.rank_id = rank
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 1), (4, 1))
strategy2 = ((2, 4),)
context.set_context(mode=context.GRAPH_MODE)
exe = me._executor
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
weight = initializer(init_name, [64, 32], ms.float32)
net = Net(strategy1, strategy2, weight)
net.set_auto_parallel()
net.set_train()
exe.compile(net, x, auto_parallel_mode=True, phase='train')
hccl.rank_id = rank_save
return net.parameters_dict()['w1'].data.asnumpy()
slice0 = get_slice(0)
slice1 = get_slice(1)
slice4 = get_slice(4)
slice_shape = slice0.shape
slice0 = slice0.flatten()
slice1 = slice1.flatten()
slice4 = slice4.flatten()
expect_slice_shape = (16, 32)
assert expect_slice_shape == slice_shape
assert all(slice0 == slice4)
if init_name not in ["One", "Zero"]:
assert any(slice0 != slice1)
initializers = ["Uniform", "Normal", "TruncatedNormal", "HeUniform", "HeNormal", "XavierUniform", "One", "Zero"]
def test_initializer_weight_slice():
for init_name in initializers:
check_initializer_weight_slice(init_name)
def test_wrong_order_set_parallel_mode_with_initializer():
weight = initializer("Normal", [64, 32], ms.float32)
strategy1 = ((2, 1), (4, 1))
strategy2 = ((2, 4),)
net = Net(strategy1, strategy2, weight)
exe = me._executor
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
net.set_auto_parallel()
with pytest.raises(RuntimeError):
exe.compile(net, x, auto_parallel_mode=True, phase='train')
def test_wrong_order_set_same_parallel_mode_with_initializer():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
weight = initializer("Normal", [64, 32], ms.float32)
strategy1 = ((2, 1), (4, 1))
strategy2 = ((2, 4),)
net = Net(strategy1, strategy2, weight)
exe = me._executor
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
net.set_auto_parallel()
exe.compile(net, x, auto_parallel_mode=True, phase='train')
def test_wrong_order_set_parallel_mode_without_initializer():
weight = Tensor(np.ones([64, 32]), ms.float32)
strategy1 = ((2, 1), (4, 1))
strategy2 = ((2, 4),)
net = Net(strategy1, strategy2, weight)
exe = me._executor
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
net.set_auto_parallel()
exe.compile(net, x, auto_parallel_mode=True, phase='train')
def test_check_initializer_weight_slice_seed(init_name="Uniform"):
def get_slice(rank):
set_seed(1)
hccl = Hccl()
rank_save = hccl.rank_id
hccl.rank_id = rank
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 1), (4, 1))
strategy2 = ((2, 4),)
context.set_context(mode=context.GRAPH_MODE)
exe = me._executor
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
weight = initializer(init_name, [64, 32], ms.float32)
net = Net(strategy1, strategy2, weight)
net.set_auto_parallel()
net.set_train()
exe.compile(net, x, auto_parallel_mode=True, phase='train')
hccl.rank_id = rank_save
return net.parameters_dict()['w1'].data.asnumpy()
slice0 = get_slice(0)
slice1 = get_slice(1)
slice4 = get_slice(4)
slice_shape = slice0.shape
slice0 = slice0.flatten()
slice1 = slice1.flatten()
slice4 = slice4.flatten()
expect_slice_shape = (16, 32)
assert expect_slice_shape == slice_shape
assert all(slice0 == slice4)
assert all(slice0 == slice1)
if __name__ == '__main__':
test_initializer_weight_slice()