forked from mindspore-Ecosystem/mindspore
174 lines
5.8 KiB
Python
174 lines
5.8 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.parameter import Parameter, ParameterTuple
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
from mindspore.ops import composite as C, functional as F, operations as P
|
|
from mindspore.train import Model
|
|
from mindspore.context import ParallelMode
|
|
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
|
from tests.dataset_mock import MindData
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class Dataset(MindData):
|
|
def __init__(self, predict, label, length=3):
|
|
super(Dataset, self).__init__(size=length)
|
|
self.predict = predict
|
|
self.label = label
|
|
self.index = 0
|
|
self.length = length
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.index >= self.length:
|
|
raise StopIteration
|
|
self.index += 1
|
|
return self.predict, self.label
|
|
|
|
def reset(self):
|
|
self.index = 0
|
|
|
|
|
|
class AllToAllNet(nn.Cell):
|
|
def __init__(self, strategy1):
|
|
super(AllToAllNet, self).__init__()
|
|
self.matmul = P.MatMul().shard(((1, 1), (1, 8)))
|
|
self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
|
|
self.transpose1 = P.Transpose().shard(strategy1)
|
|
|
|
def construct(self, x):
|
|
x = self.matmul(x, self.matmul_weight)
|
|
x = self.transpose1(x, (1, 0))
|
|
return x
|
|
|
|
|
|
def all_to_all_net(strategy1):
|
|
return AllToAllNet(strategy1=strategy1)
|
|
|
|
|
|
def loss_scale_manager_common(strategy1):
|
|
learning_rate = 0.1
|
|
momentum = 0.9
|
|
epoch_size = 2
|
|
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8)
|
|
predict = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
|
label = Tensor(np.ones([32]), dtype=ms.int32)
|
|
dataset = Dataset(predict, label, 2)
|
|
net = all_to_all_net(strategy1)
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
loss.softmax_cross_entropy.shard(((8, 1), (8, 1)))
|
|
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
|
scale_manager = DynamicLossScaleManager(32, 2, 2000)
|
|
model = Model(net, loss, opt, loss_scale_manager=scale_manager)
|
|
# if no GE exists, outputs = self._train_network(*next_element) outputs inputs tensor.
|
|
try:
|
|
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
|
except TypeError:
|
|
pass
|
|
else:
|
|
assert False
|
|
|
|
|
|
def fixme_test_dataset_interface_sens_scalar():
|
|
# With error: "The type of sens node is not Tensor or Parameter, it is unsupported now."
|
|
strategy1 = ((8, 1),)
|
|
loss_scale_manager_common(strategy1)
|
|
|
|
|
|
class TrainOneStepCell(nn.Cell):
|
|
|
|
def __init__(self, network, optimizer):
|
|
super(TrainOneStepCell, self).__init__(auto_prefix=False)
|
|
self.network = network
|
|
self.network.add_flags(defer_inline=True)
|
|
self.weights = ParameterTuple(network.trainable_params())
|
|
self.optimizer = optimizer
|
|
self.grad = C.GradOperation(get_by_list=True, sens_param=True)
|
|
|
|
def construct(self, data, sens):
|
|
weights = self.weights
|
|
loss = self.network(data)
|
|
grads = self.grad(self.network, weights)(data, sens)
|
|
return F.depend(loss, self.optimizer(grads))
|
|
|
|
|
|
def loss_scale_manager_sens(strategy1, sens):
|
|
learning_rate = 0.1
|
|
momentum = 0.9
|
|
device_num = 8
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
|
|
predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
|
|
net = all_to_all_net(strategy1)
|
|
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
|
train_net = TrainOneStepCell(net, opt)
|
|
train_net.set_train()
|
|
train_net(predict, sens)
|
|
|
|
|
|
def test_dataset_interface_sens_shape_not_equal_loss():
|
|
strategy1 = ((8, 1),)
|
|
sens = Tensor(np.ones([256, 1024]), dtype=ms.float32)
|
|
try:
|
|
loss_scale_manager_sens(strategy1, sens)
|
|
except ValueError:
|
|
pass
|
|
except TypeError:
|
|
pass
|
|
except RuntimeError:
|
|
pass
|
|
|
|
|
|
def test_dataset_interface_sens_shape_equal_loss():
|
|
strategy1 = ((4, 2),)
|
|
sens = Tensor(np.ones([256, 256]), dtype=ms.float32)
|
|
loss_scale_manager_sens(strategy1, sens)
|
|
|
|
|
|
def test_input_not_in_parameter_layotu_dict():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1):
|
|
super(Net, self).__init__()
|
|
self.matmul = P.MatMul().shard(((1, 1), (1, 8)))
|
|
self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
|
|
self.transpose1 = P.Transpose().shard(strategy1)
|
|
|
|
def construct(self, x):
|
|
x = self.matmul(x, self.matmul_weight)
|
|
x = self.transpose1(x, (1, 0))
|
|
return x
|
|
|
|
strategy1 = ((8, 1),)
|
|
device_num = 8
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
|
|
predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
|
|
net = Net(strategy1)
|
|
net.set_train()
|
|
net(predict)
|