mindspore/tests/ut/python/parallel/test_comparison_function_in...

402 lines
13 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):
net.set_auto_parallel()
net.set_train()
_executor.compile(net, x, y, b)
def test_matmul_equal():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.equal = P.Equal().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.equal(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_not_equal():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.notequal = P.NotEqual().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.notequal(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_approximateEqual():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.approximateEqual = P.ApproximateEqual(tolerance=0.5).shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.approximateEqual(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_greater():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.greater = P.Greater().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.greater(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_greaterEqual():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.greaterEqual = P.GreaterEqual().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.greaterEqual(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_less():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.less = P.Less().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.less(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_lessEqual():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.lessEqual = P.LessEqual().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.lessEqual(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_not_equal_repeated_calculation():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.notequal = P.NotEqual().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.notequal(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 1), (4, 1))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_maximum():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.maximum = P.Maximum().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.maximum(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_maximum_broadcast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.maximum = P.Maximum().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.maximum(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (2,))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_maximum_broadcast2():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.maximum = P.Maximum().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.maximum(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 4), (4, 1))
strategy2 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_minimum():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.minimum = P.Minimum().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.minimum(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_minimum_broadcast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.minimum = P.Maximum().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.minimum(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), (2,))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_minimum_broadcast2():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.minimum = P.Minimum().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.minimum(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 4), (4, 1))
strategy2 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_minimum_auto_parallel():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = P.MatMul()
self.minimum = P.Minimum()
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.minimum(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
net = GradWrap(NetWithLoss(Net()))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
compile_net(net, x, y, b)