forked from mindspore-Ecosystem/mindspore
402 lines
13 KiB
Python
402 lines
13 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
predict = self.network(x, y, b)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
return grad_all(self.network)(x, y, b)
|
|
|
|
|
|
def compile_net(net, x, y, b):
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
|
def test_matmul_equal():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.equal = P.Equal().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.equal(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_not_equal():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.notequal = P.NotEqual().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.notequal(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_approximateEqual():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.approximateEqual = P.ApproximateEqual(tolerance=0.5).shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.approximateEqual(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_greater():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.greater = P.Greater().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.greater(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_greaterEqual():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.greaterEqual = P.GreaterEqual().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.greaterEqual(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_less():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.less = P.Less().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.less(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_lessEqual():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.lessEqual = P.LessEqual().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.lessEqual(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_not_equal_repeated_calculation():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.notequal = P.NotEqual().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.notequal(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 1), (4, 1))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_maximum():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.maximum = P.Maximum().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.maximum(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_maximum_broadcast():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.maximum = P.Maximum().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.maximum(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (2,))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_maximum_broadcast2():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.maximum = P.Maximum().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.maximum(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 4), (4, 1))
|
|
strategy2 = ((4, 1), (1, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
|
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_minimum():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.minimum = P.Minimum().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.minimum(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_minimum_broadcast():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.minimum = P.Maximum().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.minimum(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (2,))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_minimum_broadcast2():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().shard(strategy1)
|
|
self.minimum = P.Minimum().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.minimum(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 4), (4, 1))
|
|
strategy2 = ((4, 1), (1, 2))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
|
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_matmul_minimum_auto_parallel():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.matmul = P.MatMul()
|
|
self.minimum = P.Minimum()
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul(x, y)
|
|
out = self.minimum(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
|
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|