forked from mindspore-Ecosystem/mindspore
94 lines
3.0 KiB
Python
94 lines
3.0 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore import context
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn.loss.loss import Loss
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
predict = self.network(x, y)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
return grad_all(self.network)(x, y)
|
|
|
|
|
|
class CustomMatMul(nn.Cell):
|
|
def __init__(self, transpose_a=False, transpose_b=False):
|
|
super(CustomMatMul, self).__init__()
|
|
self.fc = P.MatMul(transpose_a=transpose_a, transpose_b=transpose_b)
|
|
|
|
def construct(self, x1, x2):
|
|
out = self.fc(x1, x2)
|
|
return out
|
|
|
|
|
|
class MarginCE(Loss):
|
|
def __init__(self):
|
|
super(MarginCE, self).__init__()
|
|
self.fc = CustomMatMul(transpose_b=True)
|
|
self.fc1 = CustomMatMul(transpose_b=True)
|
|
self.fc2 = CustomMatMul(transpose_b=True)
|
|
self.fc3 = CustomMatMul(transpose_b=True)
|
|
self.fc4 = CustomMatMul(transpose_b=True)
|
|
self.param = Parameter(Tensor(np.ones([512, 512]), dtype=mstype.float32), name="param", requires_grad=False)
|
|
self.param2 = Parameter(Tensor(np.ones([512, 512]), dtype=mstype.float32), name="param", requires_grad=False)
|
|
|
|
def construct(self, feature, label):
|
|
fc_out = self.fc(feature, label)
|
|
|
|
fc1_out = self.fc1(self.param2, self.param)
|
|
fc2_out = self.fc2(fc1_out, fc_out)
|
|
fc3_out = self.fc3(fc1_out, fc_out)
|
|
fc4_out = self.fc4(fc2_out, fc3_out)
|
|
return fc4_out
|
|
|
|
|
|
def test_marin_loss():
|
|
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
|
|
|
x = Tensor(np.ones([512, 512]), dtype=ms.float32)
|
|
y = Tensor(np.ones([512, 512]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(MarginCE()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x, y)
|