forked from mindspore-Ecosystem/mindspore
326 lines
10 KiB
Python
326 lines
10 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x):
|
|
predict = self.network(x)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x):
|
|
return grad_all(self.network)(x)
|
|
|
|
|
|
def test_reshape_matmul():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.matmul = P.MatMul()
|
|
self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x):
|
|
out = self.reshape(x, (64, 28))
|
|
out = self.matmul(out, self.matmul_weight)
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([8 * size, 28, 1, 1]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
def test_reshape_reshape():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.relu = P.ReLU()
|
|
|
|
def construct(self, x):
|
|
x = self.relu(x)
|
|
out = self.reshape(x, (64, 28))
|
|
out = self.reshape(out, (64, 28, 1))
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([8 * size, 28, 1, 1]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
|
|
def test_reshape_auto_1():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = P.ReLU()
|
|
self.reshape = P.Reshape()
|
|
self.matmul = P.MatMul()
|
|
self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x):
|
|
out = self.relu(x)
|
|
out = self.reshape(out, (64, 28))
|
|
out = self.matmul(out, self.matmul_weight)
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([8 * size, 28, 1, 1]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
|
|
def test_reshape_auto_2():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = P.ReLU()
|
|
self.reshape = P.Reshape()
|
|
self.matmul = P.MatMul()
|
|
self.add_weight = Parameter(Tensor(np.ones([128, 32]), dtype=ms.float32), name="weight1")
|
|
self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x):
|
|
out = self.relu(x)
|
|
out = self.reshape(out, (64, 28))
|
|
out = self.matmul(out, self.matmul_weight)
|
|
out = self.reshape(out, (128, 32))
|
|
out = out + self.add_weight
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([8 * size, 28, 1, 1]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
|
|
def test_reshape_auto_3():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = P.ReLU()
|
|
self.reshape = P.Reshape()
|
|
self.matmul = P.MatMul()
|
|
self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x):
|
|
out = self.relu(x)
|
|
out = self.matmul(out, self.matmul_weight)
|
|
out = self.reshape(out, (8, 8, 8, 8))
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([8 * size, 28]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
|
|
def test_reshape_auto_4():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = P.ReLU()
|
|
self.reshape = P.Reshape()
|
|
self.matmul = P.MatMul()
|
|
self.matmul_weight = Parameter(Tensor(np.ones([28 * 64]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x):
|
|
out = self.relu(x)
|
|
out = self.reshape(out, (64, 28))
|
|
w = self.reshape(self.matmul_weight, (28, 64))
|
|
out = self.matmul(out, w)
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([8 * size, 28, 1, 1]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|
|
|
|
|
|
def test_reshape_auto_5():
|
|
class NetWithLoss5(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss5, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
predict = self.network(x, y)
|
|
return self.loss(predict)
|
|
|
|
class GradWrap5(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap5, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
return grad_all(self.network)(x, y)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = P.ReLU()
|
|
self.mul = P.Mul()
|
|
self.reshape = P.Reshape()
|
|
self.reduce_sum = P.ReduceSum()
|
|
self.wide_w = Parameter(Tensor(np.ones([4, 1024 * 8, 64]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x, y):
|
|
mask = self.reshape(y, (4, 1024 * 8, 1))
|
|
w_id = self.relu(x)
|
|
wx = self.mul(w_id, mask)
|
|
wide_out = self.reshape(self.reduce_sum(wx, 1), (-1, 1))
|
|
deep_id = x + self.wide_w
|
|
vx = self.mul(deep_id, mask)
|
|
deep_in = self.reshape(vx, (-1, 1024 * 8 * 64))
|
|
out = wide_out + deep_in
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([4, 1024 * size, 1]), dtype=ms.float32)
|
|
y = Tensor(np.ones([4, 1024 * size,]), dtype=ms.float32)
|
|
|
|
net = GradWrap5(NetWithLoss5(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x, y)
|
|
|
|
def test_reshape_auto_6():
|
|
class NetWithLoss6(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss6, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
predict = self.network(x, y)
|
|
return self.loss(predict)
|
|
|
|
class GradWrap6(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap6, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
return grad_all(self.network)(x, y)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = P.ReLU()
|
|
self.mul = P.Mul()
|
|
self.reshape = P.Reshape()
|
|
self.reduce_mean = P.ReduceMean()
|
|
self.wide_w = Parameter(Tensor(np.ones([4, 1024, 1]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x, y):
|
|
out1 = x + self.wide_w
|
|
w = self.reshape(self.wide_w, (4, 1024))
|
|
out1 = self.reduce_mean(out1, 1)
|
|
out1 = out1 - w
|
|
out2 = self.mul(y, w)
|
|
out = out1 + out2
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([4, 1024, 1]), dtype=ms.float32)
|
|
y = Tensor(np.ones([4, 1024,]), dtype=ms.float32)
|
|
|
|
net = GradWrap6(NetWithLoss6(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x, y)
|
|
|
|
def test_reshape_auto_7():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reshape = P.Reshape()
|
|
self.mul = P.Mul().shard(((1, 2, 4), (2, 4)))
|
|
self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
|
|
|
|
def construct(self, x):
|
|
weight = self.reshape(self.mul_weight, (1, 128, 96))
|
|
out = self.mul(weight, self.mul_weight)
|
|
return out
|
|
|
|
size = 8
|
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
|
x = Tensor(np.ones([128, 28]), dtype=ms.float32)
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_executor.compile(net, x)
|