This commit is contained in:
huchunmei 2021-05-25 15:28:51 +08:00
parent e513786709
commit fe296e457a
12 changed files with 50 additions and 116 deletions

View File

@ -84,7 +84,13 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
├── src
│ ├──dataset.py // creating dataset
│ ├──alexnet.py // alexnet architecture
│ ├──config.py // parameter configuration
│ └──model_utils
│ ├──config.py // Processing configuration parameters
│ ├──device_adapter.py // Get cloud ID
│ ├──local_adapter.py // Get local ID
│ └──moxing_adapter.py // Parameter processing
├── default_config.yaml // Training parameter profile(cifar10)
├── config_imagenet.yaml // Training parameter profile(imagenet)
├── train.py // training script
├── eval.py // evaluation script
```

View File

@ -88,7 +88,13 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
├── src
│ ├──dataset.py // 创建数据集
│ ├──alexnet.py // AlexNet架构
│ ├──config.py // 参数配置
| └──model_utils
| ├──config.py // 训练配置
| ├──device_adapter.py // 获取云上id
| ├──local_adapter.py // 获取本地id
| └──moxing_adapter.py // 参数处理
├── default_config.yaml // 训练参数配置文件
├── config_imagenet.yaml // 训练参数配置文件
├── train.py // 训练脚本
├── eval.py // 评估脚本
```

View File

@ -53,7 +53,7 @@ def eval_alexnet():
network = AlexNet(config.num_classes, phase='test')
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
opt = nn.Momentum(network.trainable_params(), config.learning_rate, config.momentum)
ds_eval = create_dataset_cifar10(config.data_path, config.batch_size, status="test", \
ds_eval = create_dataset_cifar10(config, config.data_path, config.batch_size, status="test", \
target=config.device_target)
param_dict = load_checkpoint(config.ckpt_path)
print("load checkpoint from [{}].".format(config.ckpt_path))
@ -64,7 +64,7 @@ def eval_alexnet():
elif config.dataset_name == 'imagenet':
network = AlexNet(config.num_classes, phase='test')
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
ds_eval = create_dataset_imagenet(config.data_path, config.batch_size, training=False)
ds_eval = create_dataset_imagenet(config, config.data_path, config.batch_size, training=False)
param_dict = load_checkpoint(config.ckpt_path)
print("load checkpoint from [{}].".format(config.ckpt_path))
load_param_into_net(network, param_dict)

View File

@ -1,54 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py
"""
from easydict import EasyDict as edict
alexnet_cifar10_cfg = edict({
'num_classes': 10,
'learning_rate': 0.002,
'momentum': 0.9,
'epoch_size': 30,
'batch_size': 32,
'buffer_size': 1000,
'image_height': 227,
'image_width': 227,
'save_checkpoint_steps': 1562,
'keep_checkpoint_max': 10,
'air_name': "alexnet.air",
})
alexnet_imagenet_cfg = edict({
'num_classes': 1000,
'learning_rate': 0.13,
'momentum': 0.9,
'epoch_size': 150,
'batch_size': 256,
'buffer_size': None, # invalid parameter
'image_height': 224,
'image_width': 224,
'save_checkpoint_steps': 625,
'keep_checkpoint_max': 10,
'air_name': "alexnet.air",
# opt
'weight_decay': 0.0001,
'loss_scale': 1024,
# lr
'is_dynamic_loss_scale': 0,
})

View File

@ -22,10 +22,9 @@ import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.common import dtype as mstype
from mindspore.communication.management import get_rank, get_group_size
from .config import alexnet_cifar10_cfg, alexnet_imagenet_cfg
def create_dataset_cifar10(data_path, batch_size=32, repeat_size=1, status="train", target="Ascend"):
def create_dataset_cifar10(cfg, data_path, batch_size=32, repeat_size=1, status="train", target="Ascend"):
"""
create dataset for train or test
"""
@ -40,7 +39,7 @@ def create_dataset_cifar10(data_path, batch_size=32, repeat_size=1, status="trai
num_shards=device_num, shard_id=rank_id)
rescale = 1.0 / 255.0
shift = 0.0
cfg = alexnet_cifar10_cfg
# cfg = alexnet_cifar10_cfg
resize_op = CV.Resize((cfg.image_height, cfg.image_width))
rescale_op = CV.Rescale(rescale, shift)
@ -65,7 +64,7 @@ def create_dataset_cifar10(data_path, batch_size=32, repeat_size=1, status="trai
return cifar_ds
def create_dataset_imagenet(dataset_path, batch_size=32, repeat_num=1, training=True,
def create_dataset_imagenet(cfg, dataset_path, batch_size=32, repeat_num=1, training=True,
num_parallel_workers=None, shuffle=None, sampler=None, class_indexing=None):
"""
create a train or eval imagenet2012 dataset for resnet50
@ -82,7 +81,7 @@ def create_dataset_imagenet(dataset_path, batch_size=32, repeat_num=1, training=
"""
device_num, rank_id = _get_rank_info()
cfg = alexnet_imagenet_cfg
# cfg = alexnet_imagenet_cfg
num_parallel_workers = 16
if device_num == 1:

View File

@ -82,9 +82,9 @@ def train_alexnet():
context.set_context(device_id=get_device_id())
if config.dataset_name == "cifar10":
ds_train = create_dataset_cifar10(config.data_path, config.batch_size, target=config.device_target)
ds_train = create_dataset_cifar10(config, config.data_path, config.batch_size, target=config.device_target)
elif config.dataset_name == "imagenet":
ds_train = create_dataset_imagenet(config.data_path, config.batch_size)
ds_train = create_dataset_imagenet(config, config.data_path, config.batch_size)
else:
raise ValueError("Unsupported dataset.")

View File

@ -100,7 +100,12 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
│ ├──aipp.cfg // aipp config
│ ├──dataset.py // creating dataset
│ ├──lenet.py // lenet architecture
│ ├──config.py // parameter configuration
│ └──model_utils
│ ├──config.py // Processing configuration parameters
│ ├──device_adapter.py // Get cloud ID
│ ├──local_adapter.py // Get local ID
│ └──moxing_adapter.py // Parameter processing
├── default_config.yaml // Training parameter profile(ascend)
├── train.py // training script
├── eval.py // evaluation script
├── postprocess.py // postprocess script

View File

@ -104,7 +104,12 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
│ ├──aipp.cfg // aipp配置文件
│ ├──dataset.py // 创建数据集
│ ├──lenet.py // Lenet架构
│ ├──config.py // 参数配置
| └──model_utils
| ├──config.py // 训练配置
| ├──device_adapter.py // 获取云上id
| ├──local_adapter.py // 获取本地id
| └──moxing_adapter.py // 参数处理
├── default_config.yaml // 训练参数配置文件
├── train.py // 训练脚本
├── eval.py // 评估脚本
├── postprocess.py // 310推理后处理脚本

View File

@ -18,7 +18,7 @@ num_classes: 10
lr: 0.01
momentum: 0.9
epoch_size: 10
batch_size: 15 # 32
batch_size: 32
buffer_size: 1000
image_height: 32
image_width: 32
@ -27,7 +27,7 @@ keep_checkpoint_max: 10
air_name: "lenet"
device_id: 0
file_name: "lenet"
file_format: "AIR"
file_format: "MINDIR"
model_name: lenet
learning_rate: 0.002
@ -37,6 +37,10 @@ dataset_sink_mode: True
save_checkpoint: True
save_checkpoint_epochs: 2
# lenet acc calculation
result_path: '' # "result files path."
img_path: '' # "image file path."
---
# Config description for each option
enable_modelarts: 'Whether training on modelarts, default: False'

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into air, mindir models"""
"""export checkpoint file into air, onnx, mindir models"""
from src.model_utils.config import config
from src.model_utils.device_adapter import get_device_id

View File

@ -14,14 +14,10 @@
# ============================================================================
"""post process for 310 inference"""
import os
import argparse
import numpy as np
from src.model_utils.config import config
batch_size = 1
parser = argparse.ArgumentParser(description="lenet acc calculation")
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
parser.add_argument("--img_path", type=str, required=True, help="image file path.")
args = parser.parse_args()
def calcul_acc(labels, preds):
@ -44,4 +40,4 @@ def get_result(result_path, img_path):
if __name__ == '__main__':
get_result(args.result_path, args.img_path)
get_result(config.result_path, config.img_path)

View File

@ -1,33 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py
"""
from easydict import EasyDict as edict
mnist_cfg = edict({
'num_classes': 10,
'lr': 0.01,
'momentum': 0.9,
'epoch_size': 10,
'batch_size': 32,
'buffer_size': 1000,
'image_height': 32,
'image_width': 32,
'save_checkpoint_steps': 1875,
'keep_checkpoint_max': 10,
'air_name': "lenet",
})