forked from mindspore-Ecosystem/mindspore
refactor lrn_grad for cpu backend.
This commit is contained in:
parent
0828efe02e
commit
fe07ad8002
|
@ -13,50 +13,63 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "plugin/device/cpu/kernel/lrn_grad_cpu_kernel.h"
|
||||
|
||||
#include "plugin/device/cpu/kernel/mkldnn/lrn_grad_cpu_kernel.h"
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "mindspore/core/ops/grad/lrn_grad.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void LrnGradCpuKernelMod::GetLrnAttr(const CNodePtr &kernel_node) {
|
||||
const std::string depth_radius = "depth_radius";
|
||||
if (!common::AnfAlgo::HasNodeAttr(depth_radius, kernel_node)) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "' has no kernel attribute: " << depth_radius;
|
||||
bool LrnGradCpuKernelMod::GetLrnGradAttr(const BaseOperatorPtr &base_operator) {
|
||||
if (kernel_name_ != ops::kNameLRNGrad) {
|
||||
MS_LOG(ERROR) << "For 'LRNGrad' kernel name get failed, but got " << kernel_name_;
|
||||
return false;
|
||||
}
|
||||
depth_radius_ = common::AnfAlgo::GetNodeAttr<int64_t>(kernel_node, "depth_radius");
|
||||
const std::string bias = "bias";
|
||||
if (!common::AnfAlgo::HasNodeAttr(bias, kernel_node)) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "' has no kernel attribute: " << bias;
|
||||
}
|
||||
bias_ = common::AnfAlgo::GetNodeAttr<float>(kernel_node, "bias");
|
||||
const std::string alpha = "alpha";
|
||||
if (!common::AnfAlgo::HasNodeAttr(alpha, kernel_node)) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "' has no kernel attribute: " << alpha;
|
||||
}
|
||||
alpha_ = common::AnfAlgo::GetNodeAttr<float>(kernel_node, "alpha");
|
||||
|
||||
const std::string beta = "beta";
|
||||
if (!common::AnfAlgo::HasNodeAttr(beta, kernel_node)) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "' has no kernel attribute: " << beta;
|
||||
}
|
||||
beta_ = common::AnfAlgo::GetNodeAttr<float>(kernel_node, "beta");
|
||||
auto kernel_ptr = std::make_shared<ops::LRNGrad>(base_operator->GetPrim());
|
||||
depth_radius_ = kernel_ptr->get_depth_radius();
|
||||
bias_ = kernel_ptr->get_bias();
|
||||
alpha_ = kernel_ptr->get_alpha();
|
||||
beta_ = kernel_ptr->get_beta();
|
||||
dnnl_algorithm_ = dnnl::algorithm::lrn_across_channels;
|
||||
return true;
|
||||
}
|
||||
|
||||
void LrnGradCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
|
||||
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
|
||||
auto kernel_attr = GetKernelAttrFromNode(kernel_node);
|
||||
bool LrnGradCpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) {
|
||||
kernel_name_ = base_operator->name();
|
||||
if (inputs.empty() || outputs.empty()) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "' got empty inputs or outputs, which is invalid.";
|
||||
return false;
|
||||
}
|
||||
if (!GetLrnGradAttr(base_operator)) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "' got GetReductionAttr failed.";
|
||||
return false;
|
||||
}
|
||||
auto kernel_attr = GetKernelAttrFromTensors(inputs, outputs);
|
||||
auto [is_match, index] = MatchKernelAttr(kernel_attr, GetOpSupport());
|
||||
if (!is_match) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "' does not support this kernel data type: " << kernel_attr;
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "' does not support this kernel type: " << kernel_attr;
|
||||
return false;
|
||||
}
|
||||
kernel_func_ = func_list_[index].second;
|
||||
GetLrnAttr(kernel_node);
|
||||
input_shape_ = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, kIndex0);
|
||||
return true;
|
||||
}
|
||||
|
||||
int LrnGradCpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs,
|
||||
const std::map<uint32_t, tensor::TensorPtr> &) {
|
||||
int ret = KRET_OK;
|
||||
if ((ret = NativeCpuKernelMod::Resize(base_operator, inputs, outputs)) != KRET_OK) {
|
||||
return ret;
|
||||
}
|
||||
std::vector<size_t> input_shape_;
|
||||
auto input_shape = inputs.at(kIndex0)->GetShapeVector();
|
||||
(void)std::transform(input_shape.begin(), input_shape.end(), std::back_inserter(input_shape_), LongToSize);
|
||||
dnnl::memory::desc src_desc = GetDefaultMemDesc(input_shape_);
|
||||
const auto lrn_multiple = 2;
|
||||
dnnl::memory::dim local_size = lrn_multiple * depth_radius_ + 1;
|
||||
|
@ -73,6 +86,7 @@ void LrnGradCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
|
|||
AddArgument(DNNL_ARG_DST, src_desc);
|
||||
AddArgument(DNNL_ARG_DIFF_SRC, src_desc);
|
||||
AddArgument(DNNL_ARG_DIFF_DST, src_desc);
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
@ -94,6 +108,7 @@ bool LrnGradCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &in
|
|||
std::vector<std::pair<KernelAttr, LrnGradCpuKernelMod::LrnGradFunc>> LrnGradCpuKernelMod::func_list_ = {
|
||||
// For kNumberTypeFloat16 input data type will cast to kNumberTypeFloat32 from frontend to backend.
|
||||
{KernelAttr()
|
||||
.AddAllSameAttr(true)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
|
@ -0,0 +1,63 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LRN_GRAD_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LRN_GRAD_CPU_KERNEL_H_
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
#include <map>
|
||||
#include "plugin/device/cpu/kernel/mkldnn/mkl_cpu_kernel.h"
|
||||
#include "plugin/factory/ms_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class LrnGradCpuKernelMod : public MKLCpuKernelMod {
|
||||
public:
|
||||
LrnGradCpuKernelMod() = default;
|
||||
~LrnGradCpuKernelMod() override = default;
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs) override {
|
||||
return kernel_func_(this, inputs, outputs);
|
||||
}
|
||||
|
||||
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) override;
|
||||
|
||||
int Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs, const std::map<uint32_t, tensor::TensorPtr> &) override;
|
||||
|
||||
protected:
|
||||
std::vector<KernelAttr> GetOpSupport() override;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
bool LaunchKernel(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
using LrnGradFunc = std::function<bool(LrnGradCpuKernelMod *, const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &)>;
|
||||
bool GetLrnGradAttr(const BaseOperatorPtr &base_operator);
|
||||
int64_t depth_radius_{1};
|
||||
float bias_{0.0};
|
||||
float alpha_{0.0};
|
||||
float beta_{0.0};
|
||||
LrnGradFunc kernel_func_;
|
||||
dnnl::algorithm dnnl_algorithm_{};
|
||||
static std::vector<std::pair<KernelAttr, LrnGradFunc>> func_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LRN_GRAD_CPU_KERNEL_H_
|
|
@ -0,0 +1,69 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ops/grad/lrn_grad.h"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/ops/primitive_infer_map.h"
|
||||
#include "mindapi/src/helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
void LRNGrad::set_depth_radius(const int64_t depth_radius) {
|
||||
(void)CheckAndConvertUtils::CheckInteger(kDepthRadius, depth_radius, kGreaterEqual, 0, this->name());
|
||||
(void)this->AddAttr(kDepthRadius, api::MakeValue(depth_radius));
|
||||
}
|
||||
|
||||
int64_t LRNGrad::get_depth_radius() const {
|
||||
auto value_ptr = GetAttr(kDepthRadius);
|
||||
return GetValue<int64_t>(value_ptr);
|
||||
}
|
||||
|
||||
void LRNGrad::set_bias(const float bias) { (void)this->AddAttr(kBias, api::MakeValue(bias)); }
|
||||
|
||||
float LRNGrad::get_bias() const {
|
||||
auto value_ptr = GetAttr(kBias);
|
||||
return GetValue<float>(value_ptr);
|
||||
}
|
||||
|
||||
void LRNGrad::set_alpha(const float alpha) { (void)this->AddAttr(kAlpha, api::MakeValue(alpha)); }
|
||||
|
||||
float LRNGrad::get_alpha() const {
|
||||
auto value_ptr = GetAttr(kAlpha);
|
||||
return GetValue<float>(value_ptr);
|
||||
}
|
||||
|
||||
void LRNGrad::set_beta(const float beta) { (void)this->AddAttr(kBeta, api::MakeValue(beta)); }
|
||||
|
||||
float LRNGrad::get_beta() const {
|
||||
auto value_ptr = GetAttr(kBeta);
|
||||
return GetValue<float>(value_ptr);
|
||||
}
|
||||
|
||||
void LRNGrad::Init(const int64_t depth_radius, const float bias, const float alpha, const float beta) {
|
||||
this->set_depth_radius(depth_radius);
|
||||
this->set_bias(bias);
|
||||
this->set_alpha(alpha);
|
||||
this->set_beta(beta);
|
||||
}
|
||||
|
||||
MIND_API_OPERATOR_IMPL(LRNGrad, BaseOperator);
|
||||
REGISTER_PRIMITIVE_C(kNameLRNGrad, LRNGrad);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,64 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_LRN_GRAD_H_
|
||||
#define MINDSPORE_CORE_OPS_LRN_GRAD_H_
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "ops/base_operator.h"
|
||||
#include "mindapi/base/types.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameLRNGrad = "LRNGrad";
|
||||
/// \brief Local Response Normalization's Grad. Refer to Python API @ref mindspore.ops.LRNGrad for more details.
|
||||
class MIND_API LRNGrad : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(LRNGrad);
|
||||
/// \brief Constructor.
|
||||
LRNGrad() : BaseOperator(kNameLRNGrad) { InitIOName({"x"}, {"y"}); }
|
||||
/// \brief Init. Refer to the parameters of Python API @ref mindspore.ops.LRNGrad for the inputs.
|
||||
void Init(const int64_t depth_radius = 5, const float bias = 1.0, const float alpha = 1.0, const float beta = 0.5);
|
||||
/// \brief Set depth_radius.
|
||||
void set_depth_radius(const int64_t depth_radius);
|
||||
/// \brief Set bias.
|
||||
void set_bias(const float bias);
|
||||
/// \brief Set alpha.
|
||||
void set_alpha(const float alpha);
|
||||
/// \brief Set beta.
|
||||
void set_beta(const float beta);
|
||||
/// \brief Get depth_radius.
|
||||
///
|
||||
/// \return depth_radius.
|
||||
int64_t get_depth_radius() const;
|
||||
/// \brief Get bias.
|
||||
///
|
||||
/// \return bias.
|
||||
float get_bias() const;
|
||||
/// \brief Get alpha.
|
||||
///
|
||||
/// \return alpha.
|
||||
float get_alpha() const;
|
||||
/// \brief Get beta.
|
||||
///
|
||||
/// \return beta.
|
||||
float get_beta() const;
|
||||
};
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CORE_OPS_LRN_GRAD_H_
|
Loading…
Reference in New Issue