forked from mindspore-Ecosystem/mindspore
!143 Adapting ops Stack and Unsatck in ME
Merge pull request !143 from liuxiao/temp
This commit is contained in:
commit
fd7d75aea3
|
@ -135,6 +135,7 @@ extern const PrimitivePtr kPrimGatherV2;
|
|||
extern const PrimitivePtr kPrimSize;
|
||||
extern const PrimitivePtr kPrimArgMax;
|
||||
extern const PrimitivePtr kPrimPack;
|
||||
extern const PrimitivePtr kPrimUnpack;
|
||||
extern const PrimitivePtr kPrimUnsortedSegmentSum;
|
||||
extern const PrimitivePtr kPrimConcatOffset;
|
||||
extern const PrimitivePtr kPrimReshape;
|
||||
|
|
|
@ -148,7 +148,8 @@ const char kNameSlice[] = "Slice";
|
|||
const char kNameAddN[] = "AddN";
|
||||
const char kNameLess[] = "Less";
|
||||
const char kNameGreater[] = "Greater";
|
||||
const char kNamePack[] = "Stack";
|
||||
const char kNameStack[] = "Stack";
|
||||
const char kNameUnstack[] = "Unstack";
|
||||
const char kNameMerge[] = "Merge";
|
||||
const char kNameGeSwitch[] = "GeSwitch";
|
||||
|
||||
|
@ -199,7 +200,8 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
|
|||
{string(kNameMaxPool), ADPT_DESC(MaxPool)},
|
||||
{string(kNameAvgPool), ADPT_DESC(AvgPool)},
|
||||
{string(kNameTopK), ADPT_DESC(TopKV2)},
|
||||
{string(kNamePack), ADPT_DESC(Pack)},
|
||||
{string(kNameStack), ADPT_DESC(Pack)},
|
||||
{string(kNameUnstack), ADPT_DESC(Unpack)},
|
||||
{string(kNameSplitD), ADPT_DESC(SplitD)},
|
||||
{string(kNameAllReduce), ADPT_DESC(HcomAllReduce)},
|
||||
{string(kNameBroadcast), ADPT_DESC(HcomBroadcast)},
|
||||
|
|
|
@ -266,6 +266,30 @@ def get_bprop_gather_v2(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Stack)
|
||||
def get_bprop_stack(self):
|
||||
"""Generate bprop for Stack"""
|
||||
axis = self.axis
|
||||
|
||||
def bprop(x, out, dout):
|
||||
stack_grad = P.Unstack(axis)
|
||||
out = stack_grad(dout)
|
||||
return (out,)
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Unstack)
|
||||
def get_bprop_unstack(self):
|
||||
"""Generate bprop for Unstack"""
|
||||
axis = self.axis
|
||||
|
||||
def bprop(x, out, dout):
|
||||
unstack_grad = P.Stack(axis)
|
||||
out = unstack_grad(dout)
|
||||
return (out,)
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.StridedSlice)
|
||||
def get_bprop_strided_slice(self):
|
||||
"""Generate bprop for StridedSlice"""
|
||||
|
|
|
@ -19,7 +19,7 @@ Primitive operator classes.
|
|||
A collection of operators to build nerual networks or computing functions.
|
||||
"""
|
||||
|
||||
from .array_ops import (Argmax, Argmin, Cast, ConcatOffset, Concat,
|
||||
from .array_ops import (Argmax, Argmin, Cast, ConcatOffset, Concat, Stack, Unstack,
|
||||
Diag, DiagPart, DType, ExpandDims, Eye,
|
||||
Fill, GatherNd, GatherV2, InvertPermutation,
|
||||
IsInstance, IsSubClass, ArgMaxWithValue, OnesLike, ZerosLike,
|
||||
|
@ -112,6 +112,8 @@ __all__ = [
|
|||
'OneHot',
|
||||
'GatherV2',
|
||||
'Concat',
|
||||
'Stack',
|
||||
'Unstack',
|
||||
'Tile',
|
||||
'BiasAdd',
|
||||
'Gelu',
|
||||
|
|
|
@ -1350,6 +1350,150 @@ class Concat(PrimitiveWithInfer):
|
|||
return out
|
||||
|
||||
|
||||
def _get_stack_shape(x_shape, x_type, axis):
|
||||
"""for satck output shape"""
|
||||
validator.check_type("shape", x_shape, [tuple])
|
||||
validator.check_integer("len of input_x shape", len(x_shape), 0, Rel.GT)
|
||||
validator.check_subclass("shape0", x_type[0], mstype.tensor)
|
||||
validator.check_integer("len of input_x0 shape", len(x_shape[0]), 0, Rel.GT)
|
||||
rank_base = len(x_shape[0])
|
||||
N = len(x_shape)
|
||||
out_shape = x_shape[0]
|
||||
validator.check_int_range('axis', axis, -rank_base - 1, rank_base, Rel.INC_BOTH)
|
||||
if axis < 0:
|
||||
axis = axis + rank_base + 1
|
||||
for i in range(1, N):
|
||||
v = x_shape[i]
|
||||
validator.check('len of x_shape[%d]' % i, len(v), 'len of rank_base', rank_base)
|
||||
validator.check('x_type[%d]' % i, x_type[i], 'base', x_type[0])
|
||||
for j in range(rank_base):
|
||||
if v[j] != x_shape[0][j]:
|
||||
raise ValueError("Stack evaluator element %d shape in input can not stack with first element" % i)
|
||||
out_shape.insert(axis, N)
|
||||
return out_shape
|
||||
|
||||
class Stack(PrimitiveWithInfer):
|
||||
r"""
|
||||
Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
|
||||
|
||||
Packs the list of tensors in `input_x` into a tensor with rank one higher than
|
||||
each tensor in `input_x`, by packing them along the `axis` dimension.
|
||||
Given a list of length `N` of tensors of shape `(A, B, C)`;
|
||||
|
||||
If `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
|
||||
|
||||
If `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. Etc.
|
||||
|
||||
Args:
|
||||
axis (int): The axis to stack along. Negative values wrap around,
|
||||
so the valid range is [-(R+1), R+1). Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Union[tuple, list]) - A Tuple or list of Tensor objects with the same shape and type.
|
||||
|
||||
Outputs:
|
||||
Tensor. A stacked Tensor with the same type as values.
|
||||
|
||||
Examples:
|
||||
>>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
|
||||
>>> data2 = Tensor(np.array([2, 3]).astype(np.float32))
|
||||
>>> op = P.Stack()
|
||||
>>> output = op([data1, data2])
|
||||
[[0, 1], [2, 3]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, axis=0):
|
||||
"""init Stack"""
|
||||
self.__setattr_flag__ = True
|
||||
validator.check_type("axis", axis, [int])
|
||||
self.axis = axis
|
||||
|
||||
def __infer__(self, value):
|
||||
x_shape = value['shape']
|
||||
x_type = value['dtype']
|
||||
self.add_prim_attr('num', len(x_shape))
|
||||
all_shape = _get_stack_shape(x_shape, x_type, self.axis)
|
||||
out = {'shape': all_shape,
|
||||
'dtype': x_type[0],
|
||||
'value': None}
|
||||
return out
|
||||
|
||||
|
||||
class Unstack(PrimitiveWithInfer):
|
||||
r"""
|
||||
Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors.
|
||||
|
||||
Unpacks num tensors from value by chipping it along the axis dimension.
|
||||
If num is not specified (the default), it is inferred from value's shape.
|
||||
If value.shape[axis] is not known, ValueError is raised.
|
||||
|
||||
For example, given a tensor of shape (A, B, C, D);
|
||||
|
||||
If axis == 0 then the i'th tensor in output is the slice value[i, :, :, :] and
|
||||
each tensor in output will have shape (B, C, D). (Note that the dimension unpacked along is gone, unlike split).
|
||||
|
||||
If axis == 1 then the i'th tensor in output is the slice value[:, i, :, :] and
|
||||
each tensor in output will have shape (A, C, D). Etc.
|
||||
|
||||
This is the opposite of stack.
|
||||
|
||||
Args:
|
||||
axis (int): The axis to unstack along. Defaults to the first dimension.
|
||||
Negative values wrap around, so the valid range is [-R, R).
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
|
||||
A rank R > 0 Tensor to be unstacked.
|
||||
|
||||
Outputs:
|
||||
A tuple of Tensors, the shape of each objects is same.
|
||||
|
||||
Raises:
|
||||
ValueError: If axis is out of the range [-len(input_x.shape()), len(input_x.shape())),
|
||||
or if len(input_x.shape[axis]) not equal to num.
|
||||
|
||||
Examples:
|
||||
>>> unstack = P.Unstack()
|
||||
>>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))
|
||||
>>> output = unstack(x)
|
||||
([1, 1, 1, 1], [2, 2, 2, 2])
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, axis=0):
|
||||
"""init Unstack"""
|
||||
self.__setattr_flag__ = True
|
||||
validator.check_type("axis", axis, [int])
|
||||
self.axis = axis
|
||||
|
||||
def __infer__(self, x):
|
||||
validator.check_subclass("x", x['dtype'], mstype.tensor)
|
||||
x_shape = list(x['shape'])
|
||||
dim = len(x_shape)
|
||||
validator.check_int_range('axis value', self.axis, -dim, dim, Rel.INC_LEFT)
|
||||
if self.axis < 0:
|
||||
self.axis = self.axis + dim
|
||||
output_num = x_shape[self.axis]
|
||||
validator.check_type("num", output_num, [int])
|
||||
validator.check_integer("output_num", output_num, 0, Rel.GT)
|
||||
self.add_prim_attr('num', output_num)
|
||||
output_valid_check = x_shape[self.axis] - output_num
|
||||
validator.check_integer("the dimension which to unstack divides output_num", output_valid_check, 0, Rel.EQ)
|
||||
out_shapes = []
|
||||
out_dtypes = []
|
||||
out_shape = x_shape[:self.axis] + x_shape[self.axis + 1:]
|
||||
for _ in range(output_num):
|
||||
out_shapes.append(tuple(out_shape))
|
||||
out_dtypes.append(x['dtype'])
|
||||
out_shapes = tuple(out_shapes)
|
||||
out_dtypes = tuple(out_dtypes)
|
||||
out = {'shape': out_shapes,
|
||||
'dtype': out_dtypes,
|
||||
'value': None}
|
||||
return out
|
||||
|
||||
|
||||
class Slice(PrimitiveWithInfer):
|
||||
"""
|
||||
Slice a tensor in specified shape.
|
||||
|
|
|
@ -80,6 +80,29 @@ class NetForConcat1(nn.Cell):
|
|||
return self.concat((x1, x2))
|
||||
|
||||
|
||||
class NetForStackInput(nn.Cell):
|
||||
def __init__(self, op):
|
||||
super(NetForStackInput, self).__init__()
|
||||
self.op = op
|
||||
self.mul = P.Mul()
|
||||
|
||||
def construct(self, *args):
|
||||
t = ()
|
||||
for i in range(len(args)):
|
||||
t = t + (self.mul(args[i], args[i]),)
|
||||
return self.op(t)
|
||||
|
||||
|
||||
class NetForUnstackInput(nn.Cell):
|
||||
def __init__(self, op):
|
||||
super(NetForUnstackInput, self).__init__()
|
||||
self.op = op
|
||||
self.mul = P.Mul()
|
||||
|
||||
def construct(self, x1):
|
||||
return self.op((self.mul(x1, x1)))
|
||||
|
||||
|
||||
class NetForFlatten(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetForFlatten, self).__init__()
|
||||
|
@ -968,6 +991,36 @@ test_case_array_ops = [
|
|||
Tensor(np.array([1], np.float32)),
|
||||
Tensor(np.array([1], np.float32)))],
|
||||
'desc_bprop': [[3,]]}),
|
||||
('StackV2_0', {
|
||||
'block': NetForStackInput(P.Stack()),
|
||||
'desc_inputs':[[2, 2], [2, 2], [2, 2]],
|
||||
'desc_bprop':[[3, 2, 2]],
|
||||
}),
|
||||
('StackV2_1', {
|
||||
'block': NetForStackInput(P.Stack(axis=-2)),
|
||||
'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
|
||||
'desc_bprop':[[3, 2, 3, 3]],
|
||||
}),
|
||||
('StackV2_2', {
|
||||
'block': NetForStackInput(P.Stack()),
|
||||
'desc_inputs':[[2, 2]],
|
||||
'desc_bprop':[[2, 2, 2]],
|
||||
}),
|
||||
('StackV2_3', {
|
||||
'block': NetForStackInput(P.Stack()),
|
||||
'desc_inputs':[[128, 128], [128, 128]],
|
||||
'desc_bprop':[[2, 128, 128]],
|
||||
}),
|
||||
('UnstackV2_0', {
|
||||
'block': NetForUnstackInput(P.Unstack(axis=0)),
|
||||
'desc_inputs':[[2, 4]],
|
||||
'desc_bprop':[[4], [4]],
|
||||
}),
|
||||
('UnstackV2_1', {
|
||||
'block': NetForUnstackInput(P.Unstack(axis=-1)),
|
||||
'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
|
||||
'desc_bprop':[[1], [1], [1]],
|
||||
}),
|
||||
('Diag', {
|
||||
'block': P.Diag(),
|
||||
'desc_inputs': [[4]],
|
||||
|
|
Loading…
Reference in New Issue