forked from mindspore-Ecosystem/mindspore
fixed the bad links
This commit is contained in:
parent
b50db3eba2
commit
fc986f98e0
|
@ -17,7 +17,9 @@ If you find our work useful in your research or publication, please cite our wor
|
|||
}
|
||||
|
||||
## Model architecture
|
||||
### The overall network architecture of IPT is shown as below:
|
||||
|
||||
### The overall network architecture of IPT is shown as below
|
||||
|
||||
![architecture](./image/ipt.png)
|
||||
|
||||
## Dataset
|
||||
|
@ -27,12 +29,9 @@ The benchmark datasets can be downloaded as follows:
|
|||
For super-resolution:
|
||||
|
||||
Set5,
|
||||
|
||||
[Set14](https://sites.google.com/site/romanzeyde/research-interests),
|
||||
|
||||
[B100](https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/),
|
||||
|
||||
[Urban100](https://sites.google.com/site/jbhuang0604/publications/struct_sr).
|
||||
Urban100.
|
||||
|
||||
For denoising:
|
||||
|
||||
|
@ -47,11 +46,15 @@ The result images are converted into YCbCr color space. The PSNR is evaluated on
|
|||
## Requirements
|
||||
|
||||
### Hardware (GPU)
|
||||
|
||||
> Prepare hardware environment with GPU.
|
||||
|
||||
### Framework
|
||||
|
||||
> [MindSpore](https://www.mindspore.cn/install/en)
|
||||
### For more information, please check the resources below:
|
||||
|
||||
### For more information, please check the resources below
|
||||
|
||||
[MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
[MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
|
@ -61,7 +64,7 @@ The result images are converted into YCbCr color space. The PSNR is evaluated on
|
|||
|
||||
### Scripts and Sample Code
|
||||
|
||||
```
|
||||
```bash
|
||||
IPT
|
||||
├── eval.py # inference entry
|
||||
├── image
|
||||
|
@ -95,23 +98,25 @@ IPT
|
|||
## Evaluation
|
||||
|
||||
### Evaluation Process
|
||||
|
||||
> Inference example:
|
||||
> For SR x4:
|
||||
|
||||
```
|
||||
```bash
|
||||
python eval.py --dir_data ../../data/ --data_test Set14 --nochange --test_only --ext img --chop_new --scale 4 --pth_path ./model/IPT_sr4.ckpt
|
||||
```
|
||||
|
||||
> Or one can run following script for all tasks.
|
||||
|
||||
```
|
||||
```bash
|
||||
sh scripts/run_eval.sh
|
||||
```
|
||||
|
||||
### Evaluation Result
|
||||
|
||||
The result are evaluated by the value of PSNR (Peak Signal-to-Noise Ratio), and the format is as following.
|
||||
|
||||
```
|
||||
```bash
|
||||
result: {"Mean psnr of Se5 x4 is 32.68"}
|
||||
```
|
||||
|
||||
|
@ -144,4 +149,4 @@ Derain results:
|
|||
|
||||
## ModeZoo Homepage
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
|
@ -37,18 +37,18 @@ Dataset used: [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html)
|
|||
|
||||
## [Mixed Precision(Ascend)](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU/CPU)
|
||||
- Prepare hardware environment with Ascend、GPU or CPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Prepare hardware environment with Ascend、GPU or CPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
# [Script description](#contents)
|
||||
|
||||
|
|
|
@ -76,10 +76,8 @@ Dataset used: [COCO2017](https://cocodataset.org/)
|
|||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend)
|
||||
|
||||
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Prepare hardware environment with Ascend processor.
|
||||
- Framework
|
||||
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
|
|
|
@ -25,8 +25,7 @@ An effective and efficient architecture performance evaluation scheme is essenti
|
|||
|
||||
# [Dataset](#contents)
|
||||
|
||||
- - Dataset used: [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html)
|
||||
|
||||
- Dataset used: [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html)
|
||||
- Dataset size: 60000 colorful images in 10 classes
|
||||
- Train: 50000 images
|
||||
- Test: 10000 images
|
||||
|
@ -37,18 +36,18 @@ An effective and efficient architecture performance evaluation scheme is essenti
|
|||
|
||||
## [Mixed Precision(Ascend)](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU/CPU)
|
||||
- Prepare hardware environment with Ascend、GPU or CPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Prepare hardware environment with Ascend、GPU or CPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
# [Script description](#contents)
|
||||
|
||||
|
|
Loading…
Reference in New Issue