!33177 add lpNorm implement

Merge pull request !33177 from zhuzhongrui/pub_master3
This commit is contained in:
i-robot 2022-04-19 06:59:21 +00:00 committed by Gitee
commit fc7f6a384c
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
6 changed files with 243 additions and 4 deletions

View File

@ -0,0 +1,111 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plugin/device/cpu/kernel/mkldnn/reduction_cpu_kernel.h"
#include <map>
#include <utility>
#include <string>
#include <set>
#include <algorithm>
#include "utils/ms_utils.h"
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
#include "mindspore/core/ops/lp_norm.h"
namespace mindspore {
namespace kernel {
namespace {
struct ReductionDescParam {
dnnl::algorithm algorithm{dnnl::algorithm::undef};
float p_{2.0f};
float eps_{0.0f};
};
} // namespace
dnnl::reduction::desc ReductionCpuKernelMod::GetReductionDesc(const dnnl::memory::desc &src_desc,
const dnnl::memory::desc &dst_desc) {
static const std::map<std::string, ReductionDescParam> reduction_op_desc_map{
{prim::kPrimLpNorm->name(), ReductionDescParam{dnnl::algorithm::reduction_norm_lp_sum, p_, eps_}}};
const auto desc_pair = reduction_op_desc_map.find(kernel_name_);
if (desc_pair == reduction_op_desc_map.end()) {
MS_LOG(EXCEPTION) << "ReductionCpuKernelMod does not support " << kernel_name_;
}
auto desc = CreateDesc<dnnl::reduction::desc>(desc_pair->second.algorithm, src_desc, dst_desc, desc_pair->second.p_,
desc_pair->second.eps_);
return desc;
}
void ReductionCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
const std::string p = "p";
if (!common::AnfAlgo::HasNodeAttr(p, kernel_node)) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "' has no kernel attribute: " << p;
}
p_ = LongToFloat(common::AnfAlgo::GetNodeAttr<int64_t>(kernel_node, p));
const std::string eps = "epsilon";
if (!common::AnfAlgo::HasNodeAttr(eps, kernel_node)) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "' has no kernel attribute: " << eps;
}
eps_ = common::AnfAlgo::GetNodeAttr<float>(kernel_node, eps);
auto kernel_attr = GetKernelAttrFromNode(kernel_node);
auto [is_match, index] = MatchKernelAttr(kernel_attr, GetOpSupport());
if (!is_match) {
MS_LOG(EXCEPTION) << kernel_name_ << " does not support this kernel data type: " << kernel_attr;
}
kernel_func_ = func_list_[index].second;
std::vector<size_t> input_shape = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, kIndex0);
std::vector<size_t> output_shape = common::AnfAlgo::GetOutputInferShape(kernel_node, kIndex0);
// For Reduction kernel required at least 4d data shape, extend it to 4d.
while (input_shape.size() < kIndex4) {
input_shape.insert(input_shape.begin(), 1);
}
while (output_shape.size() < kIndex4) {
output_shape.insert(output_shape.begin(), 1);
}
dnnl::memory::desc src_desc = GetDefaultMemDesc(input_shape);
dnnl::memory::desc dst_desc = GetDefaultMemDesc(output_shape);
auto desc = GetReductionDesc(src_desc, dst_desc);
auto prim_desc = CreateDesc<dnnl::reduction::primitive_desc>(desc, engine_);
primitive_ = CreatePrimitive<dnnl::reduction>(prim_desc);
AddArgument(DNNL_ARG_SRC, src_desc);
AddArgument(DNNL_ARG_DST, dst_desc);
}
template <typename T>
bool ReductionCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
auto input = reinterpret_cast<T *>(inputs.at(kIndex0)->addr);
auto output = reinterpret_cast<T *>(outputs.at(kIndex0)->addr);
SetArgumentHandle(DNNL_ARG_SRC, input);
SetArgumentHandle(DNNL_ARG_DST, output);
ExecutePrimitive();
return true;
}
std::vector<std::pair<KernelAttr, ReductionCpuKernelMod::ReductionFunc>> ReductionCpuKernelMod::func_list_ = {
{KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
&ReductionCpuKernelMod::LaunchKernel<float>}};
std::vector<KernelAttr> ReductionCpuKernelMod::GetOpSupport() {
std::vector<KernelAttr> support_list;
(void)std::transform(func_list_.begin(), func_list_.end(), std::back_inserter(support_list),
[](const std::pair<KernelAttr, ReductionFunc> &pair) { return pair.first; });
return support_list;
}
MS_KERNEL_FACTORY_REG_BY_CREATOR(NativeCpuKernelMod, LpNorm,
[]() { return std::make_shared<ReductionCpuKernelMod>(prim::kPrimLpNorm->name()); });
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,61 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_REDUCTION_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_REDUCTION_CPU_KERNEL_H_
#include <memory>
#include <vector>
#include <map>
#include <string>
#include <utility>
#include "plugin/device/cpu/kernel/mkldnn/mkl_cpu_kernel.h"
namespace mindspore {
namespace kernel {
class ReductionCpuKernelMod : public MKLCpuKernelMod {
public:
ReductionCpuKernelMod() = default;
explicit ReductionCpuKernelMod(const std::string &kernel_type) : kernel_type_(kernel_type) {}
~ReductionCpuKernelMod() override = default;
// TO be Deprecated API.
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override {
return kernel_func_(this, inputs, outputs);
}
protected:
std::vector<KernelAttr> GetOpSupport() override;
private:
template <typename T>
bool LaunchKernel(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
using ReductionFunc = std::function<bool(ReductionCpuKernelMod *, const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &)>;
dnnl::reduction::desc GetReductionDesc(const dnnl::memory::desc &src_desc, const dnnl::memory::desc &dst_desc);
ReductionFunc kernel_func_;
float p_{2.0};
float eps_{1e-12};
static std::vector<std::pair<KernelAttr, ReductionFunc>> func_list_;
std::string kernel_type_{};
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_REDUCTION_CPU_KERNEL_H_

View File

@ -14,7 +14,6 @@
* limitations under the License.
*/
#include <map>
#include <string>
#include <vector>
#include <algorithm>

View File

@ -101,7 +101,7 @@ inline float SizeToFloat(size_t v) { return static_cast<float>(v); }
inline double LongToDouble(int64_t v) { return static_cast<double>(v); }
inline double LongToFloat(int64_t v) { return static_cast<float>(v); }
inline float LongToFloat(int64_t v) { return static_cast<float>(v); }
inline double FloatToDouble(float v) { return static_cast<double>(v); }

View File

@ -1320,7 +1320,7 @@ class LpNorm(Primitive):
- **input** (Tensor) - Input tensor.
Outputs:
Tensor, has the same dtype as `input`, which shape depends on the args axis.For example, if the size of input
Tensor, has the same dtype as `input`, which shape depends on the args axis. For example, if the size of input
is (2, 3, 4), axis is [0, 1], Outputs' shape will be (4,).
Raises:
@ -1334,7 +1334,7 @@ class LpNorm(Primitive):
ValueError: If the length of shape of `axis` is bigger than the length of shape of `input`.
Supported Platforms:
``Ascend``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]).astype(np.float32))
@ -1347,6 +1347,7 @@ class LpNorm(Primitive):
@prim_attr_register
def __init__(self, axis, p=2, keep_dims=False, epsilon=1e-12):
"""Initialize LpNorm"""
super().__init__("LpNorm")
validator.check_value_type("p", p, [int], self.name)
validator.check_value_type("axis", axis, [int, tuple, list], self.name)
validator.check_value_type("keep_dims", keep_dims, [bool], self.name)

View File

@ -0,0 +1,67 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor, context
from mindspore.ops import operations as P
class LpNormNet(nn.Cell):
def __init__(self, axis, p=2, keep_dims=False, epsilon=1e-12):
super(LpNormNet, self).__init__()
self.lp_norm = P.LpNorm(axis, p, keep_dims, epsilon)
def construct(self, input_x):
output = self.lp_norm(input_x)
return output
def lp_norm_np_bencmark(data_type):
"""
Feature: generate a LpNorm numpy benchmark.
Description: The input shape need to match input shape.
Expectation: match to np mindspore LpNorm.
"""
result = np.array([9.165152, 10.954452]).astype(data_type)
return result
@pytest.mark.level0
@pytest.mark.env_onecard
@pytest.mark.platform_x86_cpu
@pytest.mark.parametrize("data_type", [np.float32, np.float16])
def test_lp_norm_op(data_type):
"""
Feature: Test LpNorm.
Description: The input shape need match to output shape.
Expectation: match to np benchmark.
"""
context.set_context(mode=context.GRAPH_MODE)
input_x = np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]).astype(data_type)
error = 1e-6
if data_type == np.float16:
error = 1e-3
benchmark_output = lp_norm_np_bencmark(data_type)
axis = [0, 1]
p = 2
keep_dims = False
lp_norm = LpNormNet(axis, p, keep_dims)
output = lp_norm(Tensor(input_x))
np.testing.assert_allclose(output.asnumpy(), benchmark_output, rtol=error)
context.set_context(mode=context.PYNATIVE_MODE)
output = lp_norm(Tensor(input_x))
np.testing.assert_allclose(output.asnumpy(), benchmark_output, rtol=error)