forked from mindspore-Ecosystem/mindspore
!5502 Mod SoftmaxCrossEntropyWithlogits
Merge pull request !5502 from wanyiming/mod_SoftmaxCrossEntropyWithlogits
This commit is contained in:
commit
fc79997de5
|
@ -213,13 +213,9 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
|
|||
of entry is a valid one.
|
||||
|
||||
Args:
|
||||
is_grad (bool): Specifies whether calculate grad only. Default: True.
|
||||
sparse (bool): Specifies whether labels use sparse format or not. Default: False.
|
||||
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none".
|
||||
If "none", do not perform reduction. Default: "none".
|
||||
smooth_factor (float): Label smoothing factor. It is a optional input which should be in range [0, 1].
|
||||
Default: 0.
|
||||
num_classes (int): The number of classes in the task. It is a optional input Default: 2.
|
||||
|
||||
Inputs:
|
||||
- **logits** (Tensor) - Tensor of shape (N, C).
|
||||
|
@ -238,29 +234,22 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
|
|||
>>> loss(logits, labels)
|
||||
"""
|
||||
def __init__(self,
|
||||
is_grad=True,
|
||||
sparse=False,
|
||||
reduction='none',
|
||||
smooth_factor=0,
|
||||
num_classes=2):
|
||||
reduction='none'):
|
||||
super(SoftmaxCrossEntropyWithLogits, self).__init__(reduction)
|
||||
self.is_grad = is_grad
|
||||
self.sparse = sparse
|
||||
validator.check_number_range(
|
||||
"smooth_factor", smooth_factor, 0, 1, Rel.INC_BOTH, self.cls_name)
|
||||
self.smooth_factor = smooth_factor
|
||||
self.num_classes = num_classes
|
||||
self.reduction = reduction
|
||||
self.softmax_cross_entropy = _selected_ops.SoftmaxCrossEntropyWithLogits()
|
||||
self.one_hot = P.OneHot()
|
||||
self.on_value = Tensor(1.0 - self.smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * self.smooth_factor / (self.num_classes - 1), mstype.float32)
|
||||
self.on_value = Tensor(1.0, mstype.float32)
|
||||
self.off_value = Tensor(0., mstype.float32)
|
||||
self.is_cpugpu = context.get_context('device_target') in ["CPU", "GPU"]
|
||||
|
||||
if self.is_cpugpu:
|
||||
self.sparse_softmax_cross_entropy = P.SparseSoftmaxCrossEntropyWithLogits(is_grad=self.is_grad)
|
||||
self.sparse_softmax_cross_entropy = P.SparseSoftmaxCrossEntropyWithLogits()
|
||||
|
||||
def construct(self, logits, labels):
|
||||
if self.is_cpugpu and self.sparse:
|
||||
if self.is_cpugpu and self.sparse and self.reduction == 'mean':
|
||||
x = self.sparse_softmax_cross_entropy(logits, labels)
|
||||
return x
|
||||
|
||||
|
|
|
@ -115,7 +115,7 @@ class UncertaintyEvaluation:
|
|||
self.epi_uncer_model = EpistemicUncertaintyModel(self.epi_model)
|
||||
if self.epi_uncer_model.drop_count == 0:
|
||||
if self.task_type == 'classification':
|
||||
net_loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = Adam(self.epi_uncer_model.trainable_params())
|
||||
model = Model(self.epi_uncer_model, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
else:
|
||||
|
@ -314,7 +314,7 @@ class AleatoricLoss(Cell):
|
|||
self.exp = P.Exp()
|
||||
self.normal = C.normal
|
||||
self.to_tensor = P.ScalarToArray()
|
||||
self.entropy = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
self.entropy = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
else:
|
||||
self.mean = P.ReduceMean()
|
||||
self.exp = P.Exp()
|
||||
|
|
|
@ -44,7 +44,7 @@ if __name__ == "__main__":
|
|||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||
|
||||
network = AlexNet(cfg.num_classes)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
repeat_size = cfg.epoch_size
|
||||
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
|
||||
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()})
|
||||
|
|
|
@ -47,7 +47,7 @@ if __name__ == "__main__":
|
|||
|
||||
ds_train = create_dataset_cifar10(args.data_path, cfg.batch_size, 1)
|
||||
network = AlexNet(cfg.num_classes)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, ds_train.get_dataset_size()))
|
||||
opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum)
|
||||
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()})
|
||||
|
|
|
@ -41,7 +41,7 @@ if __name__ == '__main__':
|
|||
net = GoogleNet(num_classes=cfg.num_classes)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
|
||||
weight_decay=cfg.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
||||
|
||||
if device_target == "Ascend":
|
||||
|
|
|
@ -102,7 +102,7 @@ if __name__ == '__main__':
|
|||
lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
|
||||
weight_decay=cfg.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
|
||||
if device_target == "Ascend":
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
|
||||
|
|
|
@ -46,7 +46,7 @@ if __name__ == "__main__":
|
|||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||
|
||||
network = LeNet5(cfg.num_classes)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
repeat_size = cfg.epoch_size
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
|
|
@ -50,7 +50,7 @@ if __name__ == "__main__":
|
|||
cfg.batch_size)
|
||||
|
||||
network = LeNet5(cfg.num_classes)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||||
|
|
|
@ -51,7 +51,7 @@ if __name__ == "__main__":
|
|||
per_channel=[True, False])
|
||||
|
||||
# define loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
# define network optimization
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
|
||||
|
|
|
@ -60,7 +60,7 @@ if __name__ == "__main__":
|
|||
symmetric=[False, False])
|
||||
|
||||
# define network loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
# define network optimization
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
|
||||
|
|
|
@ -51,8 +51,7 @@ if __name__ == '__main__':
|
|||
else:
|
||||
raise ValueError("Unsupported device_target.")
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(
|
||||
is_grad=False, sparse=True, reduction='mean')
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
|
||||
if args_opt.device_target == "Ascend":
|
||||
net.to_float(mstype.float16)
|
||||
|
|
|
@ -173,7 +173,7 @@ if __name__ == '__main__':
|
|||
loss = CrossEntropyWithLabelSmooth(smooth_factor=config_gpu.label_smooth,
|
||||
num_classes=config_gpu.num_classes)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
# define dataset
|
||||
epoch_size = config_gpu.epoch_size
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
|
@ -237,8 +237,7 @@ if __name__ == '__main__':
|
|||
loss = CrossEntropyWithLabelSmooth(
|
||||
smooth_factor=config_ascend.label_smooth, num_classes=config_ascend.num_classes)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(
|
||||
is_grad=False, sparse=True, reduction='mean')
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
config=config_ascend,
|
||||
|
|
|
@ -53,7 +53,7 @@ if __name__ == '__main__':
|
|||
# convert fusion network to quantization aware network
|
||||
network = quant.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False])
|
||||
# define network loss
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
|
||||
# define dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
|
|
|
@ -90,7 +90,7 @@ def train_on_ascend():
|
|||
if config.label_smooth > 0:
|
||||
loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
|
||||
else:
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
# define dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
do_train=True,
|
||||
|
@ -151,7 +151,7 @@ def train_on_gpu():
|
|||
loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth,
|
||||
num_classes=config.num_classes)
|
||||
else:
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
# define dataset
|
||||
epoch_size = config.epoch_size
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
|
|
|
@ -41,8 +41,7 @@ if __name__ == '__main__':
|
|||
else:
|
||||
raise ValueError("Unsupported device_target.")
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(
|
||||
is_grad=False, sparse=True, reduction='mean')
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net = mobilenet_v3_large(num_classes=config.num_classes)
|
||||
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
|
|
|
@ -163,8 +163,7 @@ if __name__ == '__main__':
|
|||
loss = CrossEntropyWithLabelSmooth(
|
||||
smooth_factor=config_gpu.label_smooth, num_classes=config_gpu.num_classes)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(
|
||||
is_grad=False, sparse=True, reduction='mean')
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
# define dataset
|
||||
epoch_size = config_gpu.epoch_size
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
|
|
|
@ -22,6 +22,7 @@ from mindspore import dataset as de
|
|||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from src.CrossEntropySmooth import CrossEntropySmooth
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
|
||||
|
@ -79,8 +80,8 @@ if __name__ == '__main__':
|
|||
if args_opt.dataset == "imagenet2012":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
loss = CrossEntropySmooth(sparse=True, reduction='mean',
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.sparse = sparse
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
|
||||
|
||||
def construct(self, logit, label):
|
||||
if self.sparse:
|
||||
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss = self.ce(logit, label)
|
||||
return loss
|
|
@ -33,6 +33,7 @@ from mindspore.communication.management import init, get_rank, get_group_size
|
|||
import mindspore.nn as nn
|
||||
import mindspore.common.initializer as weight_init
|
||||
from src.lr_generator import get_lr, warmup_cosine_annealing_lr
|
||||
from src.CrossEntropySmooth import CrossEntropySmooth
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
|
||||
|
@ -147,8 +148,8 @@ if __name__ == '__main__':
|
|||
if args_opt.dataset == "imagenet2012":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
|
@ -159,11 +160,10 @@ if __name__ == '__main__':
|
|||
if args_opt.dataset == "imagenet2012":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
|
||||
num_classes=config.class_num)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
|
||||
if args_opt.net == "resnet101" or args_opt.net == "resnet50":
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
|
||||
|
|
|
@ -134,7 +134,7 @@ def test(cloud_args=None):
|
|||
net = vgg16(num_classes=args.num_classes, args=args)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, args.momentum,
|
||||
weight_decay=args.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
||||
|
||||
param_dict = load_checkpoint(args.pre_trained)
|
||||
|
|
|
@ -211,7 +211,7 @@ if __name__ == '__main__':
|
|||
loss_scale=args.loss_scale)
|
||||
|
||||
if args.dataset == "cifar10":
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
model = Model(network, loss_fn=loss, optimizer=opt, metrics={'acc'},
|
||||
amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
|
||||
else:
|
||||
|
|
|
@ -64,7 +64,7 @@ if __name__ == '__main__':
|
|||
weight=Tensor(embedding_table),
|
||||
batch_size=cfg.batch_size)
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
|
||||
loss_cb = LossMonitor()
|
||||
|
||||
|
|
|
@ -70,7 +70,7 @@ if __name__ == '__main__':
|
|||
if args.pre_trained:
|
||||
load_param_into_net(network, load_checkpoint(args.pre_trained))
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
|
||||
loss_cb = LossMonitor()
|
||||
|
||||
|
|
|
@ -39,7 +39,7 @@ class MsWrapper(nn.Cell):
|
|||
|
||||
|
||||
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
opt = nn.Momentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
|
||||
filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
|
|
@ -66,7 +66,7 @@ def train(net, data, label):
|
|||
momentum = 0.9
|
||||
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
|
|
|
@ -85,7 +85,7 @@ def test_lenet_nccl():
|
|||
learning_rate = multisteplr(epoch, 2)
|
||||
momentum = 0.9
|
||||
mom_optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, mom_optimizer)
|
||||
train_network.set_train()
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.sparse = sparse
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
|
||||
|
||||
def construct(self, logit, label):
|
||||
if self.sparse:
|
||||
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss = self.ce(logit, label)
|
||||
return loss
|
|
@ -36,12 +36,12 @@ from tests.st.networks.models.resnet50.src.dataset import create_dataset
|
|||
from tests.st.networks.models.resnet50.src.lr_generator import get_learning_rate
|
||||
from tests.st.networks.models.resnet50.src.config import config
|
||||
from tests.st.networks.models.resnet50.src.metric import DistAccuracy, ClassifyCorrectCell
|
||||
from tests.st.networks.models.resnet50.src.CrossEntropySmooth import CrossEntropySmooth
|
||||
from tests.st.networks.models.resnet50.src_thor.config import config as thor_config
|
||||
from tests.st.networks.models.resnet50.src_thor.model_thor import Model as THOR_Model
|
||||
from tests.st.networks.models.resnet50.src_thor.resnet import resnet50 as resnet50_thor
|
||||
from tests.st.networks.models.resnet50.src_thor.thor import THOR
|
||||
|
||||
|
||||
MINDSPORE_HCCL_CONFIG_PATH = "/home/workspace/mindspore_config/hccl/rank_tabel_4p/rank_table_4p_1.json"
|
||||
MINDSPORE_HCCL_CONFIG_PATH_2 = "/home/workspace/mindspore_config/hccl/rank_tabel_4p/rank_table_4p_2.json"
|
||||
dataset_path = "/home/workspace/mindspore_dataset/imagenet/imagenet_original/train"
|
||||
|
@ -151,8 +151,8 @@ def train_process(q, device_id, epoch_size, device_num, enable_hccl):
|
|||
config.label_smooth_factor = 0.0
|
||||
|
||||
# loss
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor,
|
||||
num_classes=config.class_num)
|
||||
loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor,
|
||||
num_classes=config.class_num)
|
||||
|
||||
# train dataset
|
||||
dataset = create_dataset(dataset_path=dataset_path, do_train=True,
|
||||
|
@ -260,9 +260,8 @@ def train_process_thor(q, device_id, epoch_size, device_num, enable_hccl):
|
|||
thor_config.label_smooth_factor = 0.0
|
||||
|
||||
# loss
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
|
||||
smooth_factor=thor_config.label_smooth_factor,
|
||||
num_classes=thor_config.class_num)
|
||||
loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=thor_config.label_smooth_factor,
|
||||
num_classes=thor_config.class_num)
|
||||
|
||||
# train dataset
|
||||
dataset = create_dataset(dataset_path=dataset_path, do_train=True,
|
||||
|
|
|
@ -60,7 +60,7 @@ def train(net, data, label):
|
|||
momentum = 0.9
|
||||
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
|
|
|
@ -76,7 +76,7 @@ def test_trainTensor(num_classes=10, epoch=15, batch_size=32):
|
|||
lr = 0.1
|
||||
momentum = 0.9
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay=0.0001)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer)
|
||||
train_network.set_train()
|
||||
|
|
|
@ -136,7 +136,7 @@ def test_train_lenet():
|
|||
learning_rate = multisteplr(epoch, 30)
|
||||
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
|
@ -192,7 +192,7 @@ def create_dataset(data_path, batch_size=32, repeat_size=1,
|
|||
def test_train_and_eval_lenet():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
network = LeNet5(10)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
||||
|
|
|
@ -129,7 +129,7 @@ def test_LSTM():
|
|||
momentum = 0.9
|
||||
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
|
|
|
@ -337,7 +337,7 @@ def test_trainTensor(num_classes=10, epoch=8, batch_size=1):
|
|||
momentum = 0.9
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad,
|
||||
net.get_parameters()), lr, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(
|
||||
net_with_criterion, optimizer) # optimizer
|
||||
|
@ -361,7 +361,7 @@ def test_trainTensor_big_batchSize(num_classes=10, epoch=8, batch_size=338):
|
|||
momentum = 0.9
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad,
|
||||
net.get_parameters()), lr, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(
|
||||
net_with_criterion, optimizer) # optimizer
|
||||
|
@ -385,7 +385,7 @@ def test_trainTensor_amp(num_classes=10, epoch=18, batch_size=16):
|
|||
momentum = 0.9
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad,
|
||||
net.get_parameters()), lr, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
train_network = amp.build_train_network(
|
||||
net, optimizer, criterion, level="O2")
|
||||
train_network.set_train()
|
||||
|
|
|
@ -39,7 +39,7 @@ def train(net, data, label):
|
|||
momentum = 0.9
|
||||
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
|
|
|
@ -52,7 +52,7 @@ def test_momentum():
|
|||
momentum = 0.9
|
||||
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
|
|
|
@ -49,7 +49,7 @@ def test_adam():
|
|||
net = NetAdam()
|
||||
optimizer = Adam(filter(lambda x: x.requires_grad,
|
||||
net.get_parameters()), learning_rate=0.01)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(
|
||||
net_with_criterion, optimizer)
|
||||
|
|
|
@ -49,7 +49,7 @@ def test_ftrl():
|
|||
net = NetFtrl()
|
||||
optimizer = FTRL(filter(lambda x: x.requires_grad,
|
||||
net.get_parameters()), learning_rate=0.01)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(
|
||||
net_with_criterion, optimizer)
|
||||
|
|
|
@ -52,7 +52,7 @@ def test_momentum():
|
|||
momentum = 0.9
|
||||
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
|
|
|
@ -55,7 +55,7 @@ def test_SGD():
|
|||
|
||||
optimizer = SGD(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum, dampening,
|
||||
weight_decay, nesterov, loss_scale)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
|
|
|
@ -20,15 +20,13 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class NetSparseSoftmaxCrossEntropyWithLogits(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSparseSoftmaxCrossEntropyWithLogits, self).__init__()
|
||||
self.loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
self.dlogits = nn.SoftmaxCrossEntropyWithLogits(is_grad=True, sparse=True)
|
||||
self.loss = self.loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
|
||||
def construct(self, logits, labels):
|
||||
return (self.loss(logits, labels), self.dlogits(logits, labels))
|
||||
return self.loss(logits, labels)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -39,29 +37,18 @@ def test_sparse_softmax_cross_entropy_with_logits():
|
|||
[1, 10, 1],
|
||||
[10, 1, 1]]).astype(np.float32))
|
||||
labels = Tensor(np.array([2, 1, 0]).astype(np.int32))
|
||||
expect_loss = 0.0002467
|
||||
expect_dlogits = np.array([[4.1126452e-05, 4.1126452e-05, -8.2234539e-05],
|
||||
[4.1126452e-05, -8.2234539e-05, 4.1126452e-05],
|
||||
[-8.2234539e-05, 4.1126452e-05, 4.1126452e-05]]).astype(np.float32)
|
||||
expect_loss = [0.00024673, 0.00024673, 0.00024673]
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
sparse_softmax_cross_entropy_with_logits = NetSparseSoftmaxCrossEntropyWithLogits()
|
||||
output = sparse_softmax_cross_entropy_with_logits(logits, labels)
|
||||
error0 = 1.0e-6
|
||||
diff0 = output[0].asnumpy() - expect_loss
|
||||
diff0 = output.asnumpy() - expect_loss
|
||||
assert np.all(abs(diff0) < error0)
|
||||
|
||||
error1 = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
diff1 = output[1].asnumpy() - expect_dlogits
|
||||
assert np.all(abs(diff1) < error1)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
sparse_softmax_cross_entropy_with_logits = NetSparseSoftmaxCrossEntropyWithLogits()
|
||||
output = sparse_softmax_cross_entropy_with_logits(logits, labels)
|
||||
error0 = 1.0e-6
|
||||
diff0 = output[0].asnumpy() - expect_loss
|
||||
diff0 = output.asnumpy() - expect_loss
|
||||
assert np.all(abs(diff0) < error0)
|
||||
|
||||
error1 = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
diff1 = output[1].asnumpy() - expect_dlogits
|
||||
assert np.all(abs(diff1) < error1)
|
||||
|
|
|
@ -124,7 +124,7 @@ def validate_model(net, dataset):
|
|||
if __name__ == "__main__":
|
||||
network = BNNLeNet5()
|
||||
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001)
|
||||
|
||||
net_with_loss = bnn_layers.WithBNNLossCell(network, criterion, 60000, 0.000001)
|
||||
|
|
|
@ -125,7 +125,7 @@ def validate_model(net, dataset):
|
|||
if __name__ == "__main__":
|
||||
network = LeNet5()
|
||||
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001)
|
||||
|
||||
net_with_loss = WithLossCell(network, criterion)
|
||||
|
|
|
@ -124,7 +124,7 @@ def validate_model(net, dataset):
|
|||
if __name__ == "__main__":
|
||||
network = LeNet5()
|
||||
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001)
|
||||
|
||||
net_with_loss = WithLossCell(network, criterion)
|
||||
|
|
|
@ -73,9 +73,7 @@ def do_sparse_embedding(ps=False):
|
|||
|
||||
optimizer = Adam(filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(
|
||||
is_grad=False, sparse=True, reduction="mean"
|
||||
)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer)
|
||||
train_network.set_train()
|
||||
|
|
|
@ -123,7 +123,7 @@ def create_dataset(data_path, batch_size=32, repeat_size=1,
|
|||
if __name__ == "__main__":
|
||||
network = LeNet5(10)
|
||||
network.set_param_ps()
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
||||
|
|
|
@ -94,9 +94,7 @@ if __name__ == "__main__":
|
|||
np.random.seed(0)
|
||||
network = LeNet5(10)
|
||||
network.set_param_ps()
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(
|
||||
is_grad=False, sparse=True, reduction="mean"
|
||||
)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
||||
if device_target == "GPU":
|
||||
context.set_auto_parallel_context(parallel_mode="data_parallel", mirror_mean=True, device_num=get_group_size())
|
||||
|
|
|
@ -159,7 +159,7 @@ def test_pynative_lenet_train_hook_function_print_and_save_grad():
|
|||
cell_hook_function_print_grad)
|
||||
net = LeNet5(hook_function=function[0], cell_hook_function=function[1])
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = GradWrap(net_with_criterion)
|
||||
train_network.set_train()
|
||||
|
|
|
@ -145,14 +145,14 @@ def test_multi_grads():
|
|||
net = LeNet()
|
||||
|
||||
# grad operation
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=sparse)
|
||||
with_loss_cell = WithLossCell(net, loss_fn)
|
||||
grad_all = GradWrapWithLoss(with_loss_cell)
|
||||
grad_out = grad_all(Tensor(inputs_np), Tensor(labels_np)).asnumpy()
|
||||
assert np.any(grad_out != 0), 'grad result can not be all zeros'
|
||||
|
||||
# train-one-step operation
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=sparse)
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
0.01, 0.9)
|
||||
loss_net = WithLossCell(net, loss_fn)
|
||||
|
|
|
@ -42,7 +42,7 @@ def train_lenet():
|
|||
cfg.batch_size)
|
||||
|
||||
network = LeNet5(cfg.num_classes)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||||
|
@ -74,7 +74,7 @@ def train_lenet_quant():
|
|||
symmetric=[False, False])
|
||||
|
||||
# define network loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
# define network optimization
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
|
||||
|
@ -104,7 +104,7 @@ def eval_quant():
|
|||
per_channel=[True, False])
|
||||
|
||||
# define loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
# define network optimization
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
|
||||
|
|
|
@ -154,7 +154,7 @@ class TestSummary:
|
|||
|
||||
def _run_network(self, dataset_sink_mode=True):
|
||||
lenet = LeNet5()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
|
||||
summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
|
||||
|
|
|
@ -31,7 +31,7 @@ def lr_gen(fn, epoch_size):
|
|||
|
||||
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
||||
"""me_train_tensor"""
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr_gen(lambda i: 0.1, epoch_size), 0.9,
|
||||
0.01, 1024)
|
||||
Model(net, loss, opt)
|
||||
|
|
|
@ -78,7 +78,7 @@ def lr_gen(fn, epoch_size):
|
|||
|
||||
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
||||
"""me_train_tensor"""
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
# reorder the net parameters , leave the parameters that need to be passed into lars to the end part
|
||||
|
||||
opt = Momentum(get_net_trainable_reordered_params(net)[2], lr_gen(lambda i: 0.1, epoch_size), 0.9, 0.01, 1024)
|
||||
|
|
|
@ -114,7 +114,7 @@ def train_common(net):
|
|||
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
||||
dataset = Dataset(predict, label, 2)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
model = Model(net, loss, opt)
|
||||
|
||||
|
|
|
@ -79,7 +79,7 @@ def all_to_all_common(strategy1):
|
|||
dataset = Dataset(predict, label, 2)
|
||||
net = all_to_all_net(strategy1)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
loss.softmax_cross_entropy.set_strategy(((8, 1), (8, 1)))
|
||||
loss.one_hot.set_strategy(((8, 1), (), ()))
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
|
|
|
@ -134,7 +134,7 @@ def test_batchnorm_batch_parallel():
|
|||
dataset = DatasetLenet(predict, label, 2)
|
||||
net = batchnorm_net(num_classes)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss.softmax_cross_entropy.set_strategy(((dev_num, 1), (dev_num, 1)))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
|
||||
|
|
|
@ -209,7 +209,7 @@ def bn_common(parallel_mode, train_flag, strategy_loss=None):
|
|||
dataset = Dataset(predict, label, 2)
|
||||
net = bn_net()
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss.softmax_cross_entropy.set_strategy(strategy_loss)
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum, 0.0001, 1024 * rank_size)
|
||||
|
||||
|
|
|
@ -80,7 +80,7 @@ def loss_scale_manager_common(strategy1):
|
|||
dataset = Dataset(predict, label, 2)
|
||||
net = all_to_all_net(strategy1)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss.softmax_cross_entropy.set_strategy(((8, 1), (8, 1)))
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
scale_manager = DynamicLossScaleManager(32, 2, 2000)
|
||||
|
|
|
@ -76,7 +76,7 @@ def all_to_all_common(strategy1):
|
|||
dataset = Dataset(predict, label, 2)
|
||||
net = all_to_all_net(strategy1)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss.softmax_cross_entropy.set_strategy(((8, 1), (8, 1)))
|
||||
loss.one_hot.set_strategy(((8, 1), (), ()))
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
|
|
|
@ -82,7 +82,7 @@ def all_to_all_common():
|
|||
dataset = Dataset(predict, label, 2)
|
||||
net = all_to_all_net()
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
model = Model(net, loss, opt)
|
||||
|
||||
|
|
|
@ -362,7 +362,7 @@ def test_resnet_operator_batch_parallel():
|
|||
dataset = DatasetLenet(predict, label, 2)
|
||||
net = resnet_operator_net(num_classes)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss.softmax_cross_entropy.set_strategy(((dev_num, 1), (dev_num, 1)))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
|
||||
|
@ -387,7 +387,7 @@ def test_resnet_model_parallel():
|
|||
dataset = DatasetLenet(predict, label, 2)
|
||||
net = resnet_model_parallel_net(num_classes)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss.softmax_cross_entropy.set_strategy(((dev_num, 1), (dev_num, 1)))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
|
||||
|
|
|
@ -108,7 +108,7 @@ def reshape_common(parallel_mode):
|
|||
dataset = Dataset(predict, label, 2)
|
||||
net = prelu_net()
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
model = Model(net, loss, opt)
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
|
|
|
@ -95,7 +95,7 @@ def reshape_common(parallel_mode, strategy0, strategy1, strategy2, strategy_loss
|
|||
dataset = Dataset(predict, label, 2)
|
||||
net = reshape_net(strategy0, strategy1, strategy2)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss.softmax_cross_entropy.set_strategy(strategy_loss)
|
||||
loss.one_hot.set_strategy(((8, 1), (), ()))
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
|
|
|
@ -80,7 +80,7 @@ def transpose_common(strategy1, strategy2):
|
|||
dataset = Dataset(predict, label, 2)
|
||||
net = transpose_net(strategy1, strategy2)
|
||||
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss.softmax_cross_entropy.set_strategy(((8, 1), (8, 1)))
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
|
|
@ -141,7 +141,7 @@ class GradWrap(nn.Cell):
|
|||
def test_hook():
|
||||
net = LeNet5()
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = GradWrap(net_with_criterion)
|
||||
train_network.set_train()
|
||||
|
|
|
@ -129,7 +129,7 @@ def test_lenet_grad():
|
|||
verification_step = 0
|
||||
|
||||
net = LeNet5()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
momen_opti = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = GradWrap(NetWithLossClass(net))
|
||||
train_net.set_train()
|
||||
|
|
|
@ -283,7 +283,7 @@ def test_load_param_into_net():
|
|||
def test_save_checkpoint_for_network():
|
||||
""" test save_checkpoint for network"""
|
||||
net = Net()
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
opt = Momentum(net.trainable_params(), 0.0, 0.9, 0.0001, 1024)
|
||||
|
||||
loss_net = WithLossCell(net, loss)
|
||||
|
|
Loading…
Reference in New Issue