forked from mindspore-Ecosystem/mindspore
!17507 [MD] fix codecheck in master
From: @liyong126 Reviewed-by: @heleiwang,@jonyguo Signed-off-by: @jonyguo
This commit is contained in:
commit
fb5eea169b
|
@ -17,7 +17,7 @@
|
|||
#ifndef EXTERNAL_SOFTDP_H
|
||||
#define EXTERNAL_SOFTDP_H
|
||||
|
||||
#include <cstdint>
|
||||
#include <stdint.h>
|
||||
|
||||
struct SoftDpProcsessInfo {
|
||||
uint8_t *input_buffer; // input buffer
|
||||
|
|
|
@ -636,7 +636,6 @@ std::pair<MSRStatus, std::vector<uint64_t>> ShardReader::GetPagesByCategory(
|
|||
|
||||
if (!criteria.first.empty()) {
|
||||
auto schema = shard_header_->GetSchemas()[0]->GetSchema();
|
||||
|
||||
if (kNumberFieldTypeSet.find(schema["schema"][criteria.first]["type"]) != kNumberFieldTypeSet.end()) {
|
||||
sql +=
|
||||
" AND " + criteria.first + "_" + std::to_string(column_schema_id_[criteria.first]) + " = " + criteria.second;
|
||||
|
|
|
@ -660,7 +660,7 @@ MSRStatus ShardWriter::MergeBlobData(const std::vector<string> &blob_fields,
|
|||
uint64_t blob_size = b->size();
|
||||
// big edian
|
||||
for (size_t i = 0; i < buf.size(); ++i) {
|
||||
buf[buf.size() - 1 - i] = (std::numeric_limits<uint8_t>::max() & blob_size);
|
||||
buf[buf.size() - 1 - i] = (std::numeric_limits<uint8_t>::max()) & blob_size;
|
||||
blob_size >>= 8u;
|
||||
}
|
||||
std::copy(buf.begin(), buf.end(), (*output)->begin() + idx);
|
||||
|
|
|
@ -125,13 +125,12 @@ def check_parameter(func):
|
|||
else:
|
||||
check_filename(value)
|
||||
if name == 'num_consumer':
|
||||
if value is not None:
|
||||
if isinstance(value, int):
|
||||
if value < MIN_CONSUMER_COUNT or value > MAX_CONSUMER_COUNT():
|
||||
raise ParamValueError("Consumer number should between {} and {}."
|
||||
.format(MIN_CONSUMER_COUNT, MAX_CONSUMER_COUNT()))
|
||||
else:
|
||||
raise ParamValueError("Consumer number is illegal.")
|
||||
if value is None:
|
||||
raise ParamValueError("Consumer number is illegal.")
|
||||
if isinstance(value, int):
|
||||
if value < MIN_CONSUMER_COUNT or value > MAX_CONSUMER_COUNT():
|
||||
raise ParamValueError("Consumer number should between {} and {}."
|
||||
.format(MIN_CONSUMER_COUNT, MAX_CONSUMER_COUNT()))
|
||||
else:
|
||||
raise ParamValueError("Consumer number is illegal.")
|
||||
return func(*args, **kw)
|
||||
|
|
|
@ -282,9 +282,15 @@ class Model:
|
|||
scaling_sens /= self._device_number
|
||||
return scaling_sens
|
||||
|
||||
def _exec_preprocess(self, network, is_train, phase, dataset,
|
||||
dataset_sink_mode, sink_size=-1, epoch_num=1, dataset_helper=None):
|
||||
def _exec_preprocess(self, is_train, dataset, dataset_sink_mode, sink_size=-1, epoch_num=1, dataset_helper=None):
|
||||
"""Initializes dataset."""
|
||||
if is_train:
|
||||
network = self._train_network
|
||||
phase = 'train'
|
||||
else:
|
||||
network = self._eval_network
|
||||
phase = 'eval'
|
||||
|
||||
if dataset_sink_mode and not is_train:
|
||||
dataset.__loop_size__ = 1
|
||||
|
||||
|
@ -330,9 +336,7 @@ class Model:
|
|||
self._train_network.set_broadcast_flag()
|
||||
|
||||
train_dataset.__no_send__ = True
|
||||
train_dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
train_dataset_helper, train_network = self._exec_preprocess(is_train=True,
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=True,
|
||||
sink_size=sink_size)
|
||||
|
@ -346,9 +350,7 @@ class Model:
|
|||
raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.')
|
||||
|
||||
valid_dataset.__no_send__ = True
|
||||
valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
valid_dataset_helper, eval_network = self._exec_preprocess(is_train=False,
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=True)
|
||||
self._eval_network = eval_network
|
||||
|
@ -456,9 +458,7 @@ class Model:
|
|||
for i in range(epoch):
|
||||
cb_params.cur_epoch_num = i + 1
|
||||
list_callback.epoch_begin(run_context)
|
||||
dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
dataset_helper, train_network = self._exec_preprocess(is_train=True,
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=True,
|
||||
sink_size=sink_size,
|
||||
|
@ -506,9 +506,7 @@ class Model:
|
|||
list_callback (Callback): Executor of callback list. Default: None.
|
||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||
"""
|
||||
dataset_helper, _ = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
dataset_helper, _ = self._exec_preprocess(is_train=True,
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=False,
|
||||
epoch_num=epoch)
|
||||
|
@ -640,9 +638,7 @@ class Model:
|
|||
"""
|
||||
run_context = RunContext(cb_params)
|
||||
|
||||
dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
dataset_helper, eval_network = self._exec_preprocess(is_train=False,
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=True)
|
||||
self._eval_network = eval_network
|
||||
|
@ -680,9 +676,7 @@ class Model:
|
|||
run_context = RunContext(cb_params)
|
||||
cb_params.dataset_sink_mode = False
|
||||
list_callback.begin(run_context)
|
||||
dataset_helper, _ = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
dataset_helper, _ = self._exec_preprocess(is_train=False,
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=False)
|
||||
for next_element in dataset_helper:
|
||||
|
|
Loading…
Reference in New Issue