!15481 yolov3_darknet53 & resnet18 310 inference

From: @zhangxiaoxiao16
Reviewed-by: @c_34,@liangchenghui
Signed-off-by: @c_34
This commit is contained in:
mindspore-ci-bot 2021-04-23 14:17:41 +08:00 committed by Gitee
commit fb1bd143d0
20 changed files with 1266 additions and 5 deletions

View File

@ -14,6 +14,8 @@
- [Distributed Training](#distributed-training)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Export MindIR](#export-mindir)
- [Inference Process](#inference-process)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
@ -331,6 +333,52 @@ This the standard format from `pycocotools`, you can refer to [cocodataset](http
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.551
```
### [Export MindIR](#contents)
Currently, batchsize can only set to 1.
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
The ckpt_file parameter is required,
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
### [Inference Process](#contents)
#### Usage
Before performing inference, the air file must bu exported by export.py.
Current batch_Size can only be set to 1. Because the DVPP hardware is used for processing, the picture must comply with the JPEG encoding format, Otherwise, an error will be reported.
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANNO_PATH] [DEVICE_ID]
```
`DEVICE_ID` is optional, default value is 0.
#### result
Inference result is saved in current path, you can find result in acc.log file.
```eval log
# acc.log
=============coco eval reulst=========
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.311
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.528
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.322
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.127
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.323
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.428
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.259
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.398
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.423
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.442
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.551
```
## [Model Description](#contents)
### [Performance](#contents)

View File

@ -16,6 +16,10 @@
- [分布式训练](#分布式训练)
- [评估过程](#评估过程)
- [评估](#评估)
- [导出mindir模型](#导出mindir模型)
- [推理过程](#推理过程)
- [用法](#用法-2)
- [结果](#结果-2)
- [模型描述](#模型描述)
- [性能](#性能)
- [评估性能](#评估性能)
@ -334,6 +338,49 @@ sh run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.551
```
## 导出mindir模型
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
参数`ckpt_file` 是必需的,`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中进行选择。
## 推理过程
### 用法
在执行推理之前需要通过export.py导出mindir文件。
目前仅可处理batch_Size为1由于使用了DVPP硬件进行图片处理因此图片必须满足JPEG编码格式否则将会报错。
```shell
# Ascend310 推理
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANNO_PATH] [DEVICE_ID]
```
`DEVICE_ID` 可选,默认值为 0。
### 结果
推理结果保存在当前路径可在acc.log中看到最终精度结果。
```eval log
# acc.log
=============coco eval reulst=========
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.311
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.528
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.322
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.127
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.323
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.428
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.259
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.398
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.423
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.442
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.551
```
# 模型描述
## 性能

View File

@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)

View File

@ -0,0 +1,26 @@
aipp_op {
aipp_mode : static
input_format : YUV420SP_U8
related_input_rank : 0
csc_switch : true
rbuv_swap_switch : false
matrix_r0c0 : 256
matrix_r0c1 : 0
matrix_r0c2 : 359
matrix_r1c0 : 256
matrix_r1c1 : -88
matrix_r1c2 : -183
matrix_r2c0 : 256
matrix_r2c1 : 454
matrix_r2c2 : 0
input_bias_0 : 0
input_bias_1 : 128
input_bias_2 : 128
mean_chn_0 : 124
mean_chn_1 : 117
mean_chn_2 : 104
var_reci_chn_0 : 0.0171247538316637
var_reci_chn_1 : 0.0175070028011204
var_reci_chn_2 : 0.0174291938997821
}

View File

@ -0,0 +1,29 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ -d out ]; then
rm -rf out
fi
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make

View File

@ -0,0 +1,32 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
#endif

View File

@ -0,0 +1,136 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/model.h"
#include "include/api/context.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/minddata/dataset/include/vision_ascend.h"
#include "include/minddata/dataset/include/execute.h"
#include "include/minddata/dataset/include/vision.h"
#include "inc/utils.h"
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Status;
using mindspore::MSTensor;
using mindspore::dataset::Execute;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::dataset::vision::DvppDecodeResizeJpeg;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_int32(device_id, 0, "device id");
DEFINE_string(aipp_path, "./aipp.cfg", "aipp path");
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
ascend310->SetInsertOpConfigPath(FLAGS_aipp_path);
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
std::vector<MSTensor> model_inputs = model.GetInputs();
if (model_inputs.empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
auto all_files = GetAllFiles(FLAGS_dataset_path);
if (all_files.empty()) {
std::cout << "ERROR: no input data." << std::endl;
return 1;
}
std::map<double, double> costTime_map;
size_t size = all_files.size();
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << all_files[i] << std::endl;
Execute resize_op(std::shared_ptr<DvppDecodeResizeJpeg>(new DvppDecodeResizeJpeg({416, 416})));
auto imgDvpp = std::make_shared<MSTensor>();
resize_op(ReadFileToTensor(all_files[i]), imgDvpp.get());
inputs.emplace_back(imgDvpp->Name(), imgDvpp->DataType(), imgDvpp->Shape(),
imgDvpp->Data().get(), imgDvpp->DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << all_files[i] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(all_files[i], outputs);
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}

View File

@ -0,0 +1,129 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <algorithm>
#include <iostream>
#include "inc/utils.h"
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE * outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}

View File

@ -0,0 +1,63 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""YoloV3 postprocess."""
import os
import argparse
import datetime
import numpy as np
from PIL import Image
from eval import DetectionEngine
def get_img_size(file_name):
img = Image.open(file_name)
return img.size
parser = argparse.ArgumentParser('YoloV3 postprocess')
parser.add_argument('--result_path', type=str, required=True, help='result files path.')
parser.add_argument('--img_path', type=str, required=True, help='train data dir.')
parser.add_argument('--per_batch_size', default=1, type=int, help='batch size for per gpu')
parser.add_argument('--nms_thresh', type=float, default=0.5, help='threshold for NMS')
parser.add_argument('--annFile', type=str, default='', help='path to annotation')
parser.add_argument('--ignore_threshold', type=float, default=0.001, help='threshold to throw low quality boxes')
parser.add_argument('--log_path', type=str, default='outputs/', help='inference result save location')
args, _ = parser.parse_known_args()
if __name__ == "__main__":
args.outputs_dir = os.path.join(args.log_path,
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
if not os.path.exists(args.outputs_dir):
os.makedirs(args.outputs_dir)
detection = DetectionEngine(args)
bs = args.per_batch_size
f_list = os.listdir(args.img_path)
for f in f_list:
image_size = get_img_size(os.path.join(args.img_path, f))
f = f.split('.')[0]
output_big = np.fromfile(os.path.join(args.result_path, f + '_0.bin'), np.float32).reshape(bs, 13, 13, 3, 85)
output_me = np.fromfile(os.path.join(args.result_path, f + '_1.bin'), np.float32).reshape(bs, 26, 26, 3, 85)
output_small = np.fromfile(os.path.join(args.result_path, f + '_2.bin'), np.float32).reshape(bs, 52, 52, 3, 85)
image_id = [int(f.split('_')[-1])]
image_shape = [[image_size[0], image_size[1]]]
detection.detect([output_small, output_me, output_big], bs, image_shape, image_id)
detection.do_nms_for_results()
result_file_path = detection.write_result()
eval_result = detection.get_eval_result()
print('\n=============coco eval result=========\n' + eval_result)

View File

@ -0,0 +1,100 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 3 || $# -gt 4 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANNO_PATH] [DEVICE_ID]
DVPP is mandatory, and must choose from [DVPP|CPU], it's case-insensitive
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
data_path=$(get_real_path $2)
anno_path=$(get_real_path $3)
device_id=0
if [ $# == 4 ]; then
device_id=$4
fi
echo "mindir name: "$model
echo "dataset path: "$data_path
echo "annotation path: "$anno_path
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function compile_app()
{
cd ../ascend310_infer || exit
bash build.sh &> build.log
}
function infer()
{
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --aipp_path=../ascend310_infer/aipp.cfg &> infer.log
}
function cal_acc()
{
python3.7 ../postprocess.py --result_path=./result_Files --img_path=$data_path --annFile=$anno_path &> acc.log
}
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi

View File

@ -12,6 +12,8 @@
- [Training](#training)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Export MindIR](#export-mindir)
- [Inference Process](#inference-process)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
@ -193,6 +195,40 @@ You will get the precision and recall value of each class:
Note the precision and recall values are results of two-classification(person and face) used our own annotations with coco2017.
## [Export MindIR](#contents)
Currently, batchsize can only set to 1.
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
The ckpt_file parameter is required,
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
## [Inference Process](#contents)
### Usage
Before performing inference, the mindir file must be exported by export.py.
Current batch_Size can only be set to 1. Images to be processed needs to be copied to the to-be-processed folder based on the annotation file.
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANNO_PATH] [DEVICE_ID]
```
`DEVICE_ID` is optional, default value is 0.
### result
Inference result is saved in current path, you can find result in acc.log file.
```bash
class 0 precision is 88.18%, recall is 66.00%
class 1 precision is 85.34%, recall is 79.13%
```
# [Model Description](#contents)
## [Performance](#contents)

View File

@ -15,6 +15,10 @@
- [Ascend上训练](#ascend上训练)
- [评估过程](#评估过程)
- [Ascend评估](#ascend评估)
- [导出mindir模型](#导出mindir模型)
- [推理过程](#推理过程)
- [用法](#用法-2)
- [结果](#结果-2)
- [模型描述](#模型描述)
- [性能](#性能)
- [评估性能](#评估性能)
@ -194,6 +198,37 @@ YOLOv3整体网络架构如下
注意精度和召回值是使用我们自己的标注和COCO 2017的两种分类人与脸的结果。
## 导出mindir模型
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
参数`ckpt_file` 是必需的,`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中进行选择。
## 推理过程
### 用法
在执行推理之前需要通过export.py导出mindir文件。
目前仅可处理batch_Size为1且图片需要根据关联的标签文件导出至待处理文件夹。
```shell
# Ascend310 推理
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANNO_PATH] [DEVICE_ID]
```
`DEVICE_ID` 可选,默认值为 0。
### 结果
推理结果保存在当前路径可在acc.log中看到最终精度结果。
```bash
class 0 precision is 88.18%, recall is 66.00%
class 1 precision is 85.34%, recall is 79.13%
```
# 模型描述
## 性能

View File

@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)

View File

@ -0,0 +1,29 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ -d out ]; then
rm -rf out
fi
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make

View File

@ -0,0 +1,32 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
#endif

View File

@ -0,0 +1,201 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/model.h"
#include "include/api/context.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/minddata/dataset/include/execute.h"
#include "include/minddata/dataset/include/vision.h"
#include "inc/utils.h"
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Status;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::MSTensor;
using mindspore::DataType;
using mindspore::dataset::Execute;
using mindspore::dataset::TensorTransform;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::Pad;
using mindspore::dataset::vision::HWC2CHW;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::Decode;
using mindspore::dataset::InterpolationMode;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_int32(device_id, 0, "device id");
int PadImage(const MSTensor &input, MSTensor *output) {
std::shared_ptr<TensorTransform> normalize(new Normalize({0, 0, 0},
{255, 255, 255}));
Execute composeNormalize({normalize});
std::vector<int64_t> shape = input.Shape();
auto imgResize = MSTensor();
auto imgPad = MSTensor();
const int IMAGEWIDTH = 352;
const int IMAGEHEIGHT = 640;
float widthScale, heightScale;
widthScale = static_cast<float>(IMAGEWIDTH) / shape[0];
heightScale = static_cast<float>(IMAGEHEIGHT) / shape[1];
int widthSize, heightSize;
if (widthScale < heightScale) {
widthSize = shape[0]*widthScale;
heightSize = shape[1]*widthScale;
} else {
widthSize = shape[0]*heightScale;
heightSize = shape[1]*heightScale;
}
std::shared_ptr<TensorTransform> resize(new Resize({widthSize, heightSize}, InterpolationMode::kArea));
Execute composeResize({resize});
Status ret = composeResize(input, &imgResize);
if (ret != kSuccess) {
std::cout << "ERROR: Resize failed." << std::endl;
return 1;
}
int padH = IMAGEHEIGHT - heightSize;
int padW = IMAGEWIDTH - widthSize;
int padHH = padH / 2;
int padWH = padW / 2;
std::shared_ptr<TensorTransform> pad(new Pad({padHH, padWH, (padH - padHH), (padW - padWH)}, {128}));
Execute composePad({pad});
ret = composePad(imgResize, &imgPad);
if (ret != kSuccess) {
std::cout << "ERROR: Pad failed." << std::endl;
return 1;
}
ret = composeNormalize(imgPad, output);
if (ret != kSuccess) {
std::cout << "ERROR: Normalize failed." << std::endl;
return 1;
}
return 0;
}
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
std::vector<MSTensor> model_inputs = model.GetInputs();
if (model_inputs.empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
auto all_files = GetAllFiles(FLAGS_dataset_path);
if (all_files.empty()) {
std::cout << "ERROR: no input data." << std::endl;
return 1;
}
std::map<double, double> costTime_map;
size_t size = all_files.size();
std::shared_ptr<TensorTransform> decode(new Decode());
Execute composeDecode({decode});
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
Execute composeTranspose({hwc2chw});
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << all_files[i] << std::endl;
auto imgDecode = MSTensor();
auto image = ReadFileToTensor(all_files[i]);
ret = composeDecode(image, &imgDecode);
if (ret != kSuccess) {
std::cout << "ERROR: Decode failed." << std::endl;
return 1;
}
auto imgPad = MSTensor();
PadImage(imgDecode, &imgPad);
auto img = MSTensor();
composeTranspose(imgPad, &img);
float imgInfo[2];
imgInfo[0] = imgDecode.Shape()[0];
imgInfo[1] = imgDecode.Shape()[1];
MSTensor imgShape("imgShape", DataType::kNumberTypeFloat32, std::vector<int64_t>{1, 2}, imgInfo, 8);
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
img.Data().get(), img.DataSize());
inputs.emplace_back(model_inputs[1].Name(), model_inputs[1].DataType(), model_inputs[1].Shape(),
imgShape.Data().get(), imgShape.DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << all_files[i] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(all_files[i], outputs);
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}

View File

@ -0,0 +1,129 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <algorithm>
#include <iostream>
#include "inc/utils.h"
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE * outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}

View File

@ -19,7 +19,7 @@ import mindspore as ms
from mindspore import context, Tensor
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
from src.yolov3 import yolov3_resnet18
from src.yolov3 import yolov3_resnet18, YoloWithEval
from src.config import ConfigYOLOV3ResNet18
parser = argparse.ArgumentParser(description='yolov3_resnet18 export')
@ -38,14 +38,17 @@ if args.device_target == "Ascend":
if __name__ == "__main__":
config = ConfigYOLOV3ResNet18()
network = yolov3_resnet18(config)
net = yolov3_resnet18(config)
eval_net = YoloWithEval(net, config)
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(network, param_dict)
load_param_into_net(eval_net, param_dict)
network.set_train(False)
eval_net.set_train(False)
shape = [args.batch_size, 3] + config.img_shape
input_data = Tensor(np.zeros(shape), ms.float32)
input_shape = Tensor(np.zeros([1, 2]), ms.float32)
inputs = (input_data, input_shape)
export(network, input_data, file_name=args.file_name, file_format=args.file_format)
export(eval_net, *inputs, file_name=args.file_name, file_format=args.file_format)

View File

@ -0,0 +1,60 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Postprocess for yolov3-resnet18"""
import os
import argparse
import numpy as np
from src.config import ConfigYOLOV3ResNet18
from src.utils import metrics
parser = argparse.ArgumentParser(description='Yolov3 postprocess')
parser.add_argument("--batchsize", type=int, default=1, help="batchsize.")
parser.add_argument("--anno_path", type=str, required=True, help="Annotation path.")
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
args = parser.parse_args()
if __name__ == '__main__':
config = ConfigYOLOV3ResNet18()
batchsize = args.batchsize
anno_dict = {}
for line in open(args.anno_path):
line_list = line.split(' ')
line_list[0] = line_list[0].split('/')[-1]
anno_dict[line_list[0]] = line_list[1:]
pred_data = []
for key in anno_dict:
result0 = os.path.join(args.result_path, key.split('.')[0] + '_0.bin')
result1 = os.path.join(args.result_path, key.split('.')[0] + '_1.bin')
output0 = np.fromfile(result0, np.float32).reshape(batchsize, 13860, 4)
output1 = np.fromfile(result1, np.float32).reshape(batchsize, 13860, 2)
anno_list = []
for v in anno_dict[key]:
v_list = v.split(',')
anno_list.append(v_list)
annotation = np.array(anno_list, np.int64)
for batch_idx in range(batchsize):
pred_data.append({"boxes": output0[batch_idx],
"box_scores": output1[batch_idx],
"annotation": annotation})
precisions, recalls = metrics(pred_data)
print("\n========================================\n")
for i in range(config.num_classes):
print("class {} precision is {:.2f}%, recall is {:.2f}%".format(i, precisions[i] * 100, recalls[i] * 100))

View File

@ -0,0 +1,98 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 3 || $# -gt 4 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANNO_PATH] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
data_path=$(get_real_path $2)
anno_path=$(get_real_path $3)
device_id=0
if [ $# == 4 ]; then
device_id=$4
fi
echo "mindir name: "$model
echo "dataset path: "$data_path
echo "annotation path: "$anno_path
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function compile_app()
{
cd ../ascend310_infer || exit
bash build.sh &> build.log
}
function infer()
{
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
}
function cal_acc()
{
python3.7 ../postprocess.py --result_path=./result_Files --anno_path=$anno_path &> acc.log
}
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi