forked from mindspore-Ecosystem/mindspore
!12398 fix minddata issues
From: @luoyang42 Reviewed-by: @heleiwang,@pandoublefeng Signed-off-by: @pandoublefeng
This commit is contained in:
commit
f940fe51b1
|
@ -326,6 +326,7 @@ install(
|
|||
${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/include/transforms.h
|
||||
${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/include/vision.h
|
||||
${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/include/vision_lite.h
|
||||
${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/include/vision_ascend.h
|
||||
${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/include/execute.h
|
||||
DESTINATION ${INSTALL_BASE_DIR}/include/minddata/dataset/include
|
||||
COMPONENT mindspore
|
||||
|
|
|
@ -105,6 +105,11 @@ Status GeneratorNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_
|
|||
// no validation is needed for generator op.
|
||||
Status GeneratorNode::ValidateParams() {
|
||||
RETURN_IF_NOT_OK(DatasetNode::ValidateParams());
|
||||
if (source_len_ == 0) {
|
||||
std::string err_msg = "GeneratorNode: data row of input source must not be 0, got: " + std::to_string(source_len_);
|
||||
MS_LOG(ERROR) << err_msg;
|
||||
RETURN_STATUS_SYNTAX_ERROR(err_msg);
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
|
|
|
@ -38,12 +38,6 @@ Status SharpnessOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_pt
|
|||
RETURN_STATUS_UNEXPECTED("Sharpness: image shape is not <H,W,C> or <H,W>");
|
||||
}
|
||||
|
||||
/// Get number of channels and image matrix
|
||||
std::size_t num_of_channels = input_cv->shape()[2];
|
||||
if (num_of_channels != 1 && num_of_channels != 3) {
|
||||
RETURN_STATUS_UNEXPECTED("Sharpness: image channel is not 1 or 3.");
|
||||
}
|
||||
|
||||
/// creating a smoothing filter. 1, 1, 1,
|
||||
/// 1, 5, 1,
|
||||
/// 1, 1, 1
|
||||
|
|
|
@ -344,8 +344,9 @@ def check_num_parallel_workers(value):
|
|||
|
||||
def check_num_samples(value):
|
||||
type_check(value, (int,), "num_samples")
|
||||
check_value(value, [0, INT32_MAX], "num_samples")
|
||||
|
||||
if value < 0 or value > INT64_MAX:
|
||||
raise ValueError(
|
||||
"num_samples exceeds the boundary between {} and {}(INT64_MAX)!".format(0, INT64_MAX))
|
||||
|
||||
def validate_dataset_param_value(param_list, param_dict, param_type):
|
||||
for param_name in param_list:
|
||||
|
|
|
@ -23,6 +23,7 @@ import numbers
|
|||
import numpy as np
|
||||
import mindspore._c_dataengine as cde
|
||||
import mindspore.dataset as ds
|
||||
from ..core import validator_helpers as validator
|
||||
|
||||
|
||||
def select_sampler(num_samples, input_sampler, shuffle, num_shards, shard_id):
|
||||
|
@ -349,8 +350,12 @@ class DistributedSampler(BuiltinSampler):
|
|||
if not isinstance(shuffle, bool):
|
||||
raise TypeError("shuffle must be a boolean value but was: {}.".format(shuffle))
|
||||
|
||||
if num_samples is not None and not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples is not None:
|
||||
if not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples < 0 or num_samples > validator.INT64_MAX:
|
||||
raise ValueError("num_samples exceeds the boundary between {} and {}(INT64_MAX)!"
|
||||
.format(0, validator.INT64_MAX))
|
||||
|
||||
if not isinstance(offset, int):
|
||||
raise TypeError("offset must be integer but was: {}.".format(offset))
|
||||
|
@ -441,8 +446,12 @@ class PKSampler(BuiltinSampler):
|
|||
if not isinstance(class_column, str):
|
||||
raise TypeError("class_column must be a str value but was: {}.".format(class_column))
|
||||
|
||||
if num_samples is not None and not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples is not None:
|
||||
if not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples < 0 or num_samples > validator.INT64_MAX:
|
||||
raise ValueError("num_samples exceeds the boundary between {} and {}(INT64_MAX)!"
|
||||
.format(0, validator.INT64_MAX))
|
||||
|
||||
self.num_val = num_val
|
||||
self.shuffle = shuffle
|
||||
|
@ -505,8 +514,12 @@ class RandomSampler(BuiltinSampler):
|
|||
if not isinstance(replacement, bool):
|
||||
raise TypeError("replacement must be a boolean value but was: {}.".format(replacement))
|
||||
|
||||
if num_samples is not None and not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples is not None:
|
||||
if not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples < 0 or num_samples > validator.INT64_MAX:
|
||||
raise ValueError("num_samples exceeds the boundary between {} and {}(INT64_MAX)!"
|
||||
.format(0, validator.INT64_MAX))
|
||||
|
||||
self.deterministic = False
|
||||
self.replacement = replacement
|
||||
|
@ -564,8 +577,12 @@ class SequentialSampler(BuiltinSampler):
|
|||
if start_index is not None and not isinstance(start_index, int):
|
||||
raise TypeError("start_index must be integer but was: {}.".format(start_index))
|
||||
|
||||
if num_samples is not None and not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples is not None:
|
||||
if not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples < 0 or num_samples > validator.INT64_MAX:
|
||||
raise ValueError("num_samples exceeds the boundary between {} and {}(INT64_MAX)!"
|
||||
.format(0, validator.INT64_MAX))
|
||||
|
||||
self.start_index = start_index
|
||||
super().__init__(num_samples)
|
||||
|
@ -631,8 +648,12 @@ class SubsetSampler(BuiltinSampler):
|
|||
raise TypeError("type of indices element must be number, "
|
||||
"but got w[{}]: {}, type: {}.".format(i, item, type(item)))
|
||||
|
||||
if num_samples is not None and not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples is not None:
|
||||
if not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples < 0 or num_samples > validator.INT64_MAX:
|
||||
raise ValueError("num_samples exceeds the boundary between {} and {}(INT64_MAX)!"
|
||||
.format(0, validator.INT64_MAX))
|
||||
|
||||
self.indices = indices
|
||||
super().__init__(num_samples)
|
||||
|
@ -744,8 +765,12 @@ class WeightedRandomSampler(BuiltinSampler):
|
|||
raise TypeError("type of weights element must be number, "
|
||||
"but got w[{}]: {}, type: {}.".format(ind, w, type(w)))
|
||||
|
||||
if num_samples is not None and not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples is not None:
|
||||
if not isinstance(num_samples, int):
|
||||
raise TypeError("num_samples must be integer but was: {}.".format(num_samples))
|
||||
if num_samples < 0 or num_samples > validator.INT64_MAX:
|
||||
raise ValueError("num_samples exceeds the boundary between {} and {}(INT64_MAX)!"
|
||||
.format(0, validator.INT64_MAX))
|
||||
|
||||
if not isinstance(replacement, bool):
|
||||
raise TypeError("replacement must be a boolean value but was: {}.".format(replacement))
|
||||
|
|
|
@ -444,10 +444,9 @@ class Pad(ImageTensorOperation):
|
|||
If 4 values are provided as a list or tuple,
|
||||
it pads the left, top, right and bottom respectively.
|
||||
fill_value (Union[int, tuple], optional): The pixel intensity of the borders, only valid for
|
||||
padding_mode Border.CONSTANT (default=0).
|
||||
padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
||||
If it is an integer, it is used for all RGB channels.
|
||||
If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
||||
The fill_value values must be in range [0, 255].
|
||||
The fill_value values must be in range [0, 255] (default=0).
|
||||
padding_mode (Border mode, optional): The method of padding (default=Border.CONSTANT). Can be any of
|
||||
[Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
|
||||
|
||||
|
@ -684,9 +683,10 @@ class RandomCrop(ImageTensorOperation):
|
|||
pad the left, top, right and bottom respectively.
|
||||
pad_if_needed (bool, optional): Pad the image if either side is smaller than
|
||||
the given output size (default=False).
|
||||
fill_value (Union[int, tuple], optional): The pixel intensity of the borders if
|
||||
the padding_mode is Border.CONSTANT (default=0). If it is a 3-tuple, it is used to
|
||||
fill R, G, B channels respectively.
|
||||
fill_value (Union[int, tuple], optional): The pixel intensity of the borders, only valid for
|
||||
padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
||||
If it is an integer, it is used for all RGB channels.
|
||||
The fill_value values must be in range [0, 255] (default=0).
|
||||
padding_mode (Border mode, optional): The method of padding (default=Border.CONSTANT). It can be any of
|
||||
[Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
|
||||
|
||||
|
@ -799,9 +799,10 @@ class RandomCropWithBBox(ImageTensorOperation):
|
|||
If 4 values are provided as a list or tuple, pad the left, top, right and bottom respectively.
|
||||
pad_if_needed (bool, optional): Pad the image if either side is smaller than
|
||||
the given output size (default=False).
|
||||
fill_value (Union[int, tuple], optional): The pixel intensity of the borders if
|
||||
the padding_mode is Border.CONSTANT (default=0). If it is a 3-tuple, it is used to
|
||||
fill R, G, B channels respectively.
|
||||
fill_value (Union[int, tuple], optional): The pixel intensity of the borders, only valid for
|
||||
padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
||||
If it is an integer, it is used for all RGB channels.
|
||||
The fill_value values must be in range [0, 255] (default=0).
|
||||
padding_mode (Border mode, optional): The method of padding (default=Border.CONSTANT). It can be any of
|
||||
[Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
|
||||
|
||||
|
@ -1105,10 +1106,10 @@ class RandomRotation(ImageTensorOperation):
|
|||
Note that the expand flag assumes rotation around the center and no translation.
|
||||
center (tuple, optional): Optional center of rotation (a 2-tuple) (default=None).
|
||||
Origin is the top left corner. None sets to the center of the image.
|
||||
fill_value (Union[int, tuple], optional): Optional fill color for the area outside the rotated image
|
||||
(default=0).
|
||||
If it is a 3-tuple, it is used for R, G, B channels respectively.
|
||||
fill_value (Union[int, tuple], optional): Optional fill color for the area outside the rotated image.
|
||||
If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
||||
If it is an integer, it is used for all RGB channels.
|
||||
The fill_value values must be in range [0, 255] (default=0).
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.dataset.vision import Inter
|
||||
|
|
|
@ -195,7 +195,7 @@ def test_textline_dataset_to_device():
|
|||
def test_textline_dataset_exceptions():
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
_ = ds.TextFileDataset(DATA_FILE, num_samples=-1)
|
||||
assert "Input num_samples is not within the required interval" in str(error_info.value)
|
||||
assert "num_samples exceeds the boundary" in str(error_info.value)
|
||||
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
_ = ds.TextFileDataset("does/not/exist/no.txt")
|
||||
|
|
|
@ -41,7 +41,7 @@ def test_exception_02():
|
|||
num_samples = -1
|
||||
with pytest.raises(ValueError) as info:
|
||||
ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
|
||||
assert 'Input num_samples is not within the required interval of (0 to 2147483647).' in str(info.value)
|
||||
assert 'num_samples exceeds the boundary between 0 and 9223372036854775807(INT64_MAX)' in str(info.value)
|
||||
|
||||
num_samples = 1
|
||||
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
|
||||
|
|
|
@ -280,7 +280,7 @@ def test_cv_minddataset_partition_num_samples_equals_0():
|
|||
with pytest.raises(ValueError) as error_info:
|
||||
partitions(5)
|
||||
try:
|
||||
assert 'Input num_samples is not within the required interval of (0 to 2147483647).' in str(error_info.value)
|
||||
assert 'num_samples exceeds the boundary between 0 and 9223372036854775807(INT64_MAX)' in str(error_info.value)
|
||||
except Exception as error:
|
||||
os.remove(CV_FILE_NAME)
|
||||
os.remove("{}.db".format(CV_FILE_NAME))
|
||||
|
|
|
@ -211,7 +211,7 @@ def test_subset_sampler():
|
|||
test_config([0, 9, -6, 2], exception_msg="Sample ID (-6) is out of bound, expected range [0, 9]")
|
||||
# test_config([], exception_msg="Indices list is empty") # temporary until we check with MindDataset
|
||||
test_config([0, 9, 3, 2], num_samples=-1,
|
||||
exception_msg="SubsetRandomSampler: num_samples must be greater than or equal to 0")
|
||||
exception_msg="num_samples exceeds the boundary between 0 and 9223372036854775807(INT64_MAX)")
|
||||
|
||||
|
||||
def test_sampler_chain():
|
||||
|
|
Loading…
Reference in New Issue