!8289 Add Parallel Implements of Slice Op

From: @huangxinjing
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-11-19 15:54:20 +08:00 committed by Gitee
commit f827c18f1d
9 changed files with 499 additions and 2 deletions

View File

@ -172,6 +172,8 @@ using TransposeCost = ActivationCost;
using TransposeCostPtr = std::shared_ptr<TransposeCost>;
using StridedSliceCost = ActivationCost;
using StridedSliceCostPtr = std::shared_ptr<StridedSliceCost>;
using SliceCost = ActivationCost;
using SliceCostPtr = std::shared_ptr<SliceCost>;
using SplitCost = ActivationCost;
using SplitCostPtr = std::shared_ptr<SplitCost>;

View File

@ -184,6 +184,7 @@ REGISTER(EmbeddingLookupInfo);
REGISTER(TileInfo);
REGISTER(BroadcastToInfo);
REGISTER(StridedSliceInfo);
REGISTER(SliceInfo);
REGISTER(DropoutInfo);
REGISTER(PackInfo);
REGISTER(ConcatInfo);

View File

@ -40,6 +40,7 @@
#include "frontend/parallel/ops_info/gather_v2_p_info.h"
#include "frontend/parallel/ops_info/tile_info.h"
#include "frontend/parallel/ops_info/strided_slice_info.h"
#include "frontend/parallel/ops_info/slice_info.h"
#include "frontend/parallel/ops_info/concat_info.h"
#include "frontend/parallel/ops_info/split_info.h"
#include "frontend/parallel/ops_info/tensordot_info.h"

View File

@ -29,6 +29,9 @@ constexpr int64_t NO_SPLIT_STRATEGY = 1;
constexpr int64_t SPLIT_FLAG = 1;
constexpr int64_t NO_SPLIT_FLAG = 0;
constexpr size_t MATMUL_ATTRS_SIZE = 2;
constexpr size_t SLICE_BEGIN_INDEX = 1;
constexpr size_t SLICE_SIZE_INDEX = 2;
constexpr size_t SLICE_INPUTS_SIZE = 3;
constexpr size_t STRIDED_SLICE_ATTRS_SIZE = 5;
constexpr size_t STRIDED_SLICE_INPUTS_SIZE = 4;
constexpr size_t STRIDED_SLICE_BEGIN_INDEX = 1;
@ -98,6 +101,7 @@ constexpr char ELLIPSIS_MASK[] = "ellipsis_mask";
constexpr char NEW_AXIS_MASK[] = "new_axis_mask";
constexpr char SHRINK_AXIS_MASK[] = "shrink_axis_mask";
constexpr char BEGIN[] = "begin";
constexpr char SIZE[] = "size";
constexpr char END[] = "end";
constexpr char STRIDES[] = "strides";
constexpr char GROUP[] = "group";
@ -241,6 +245,7 @@ constexpr char LOGICALNOT[] = "LogicalNot";
constexpr char GATHERV2[] = "GatherV2";
constexpr char SPARSE_GATHERV2[] = "SparseGatherV2";
constexpr char STRIDEDSLICE[] = "StridedSlice";
constexpr char SLICE[] = "Slice";
constexpr char BROADCAST[] = "Broadcast";
constexpr char BROADCAST_TO[] = "BroadcastTo";
constexpr char SQRT[] = "Sqrt";

View File

@ -0,0 +1,284 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "frontend/parallel/ops_info/slice_info.h"
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "frontend/parallel/device_matrix.h"
#include "frontend/parallel/strategy.h"
#include "frontend/parallel/graph_util/generate_graph.h"
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
#include "pipeline/jit/resource.h"
namespace mindspore {
namespace parallel {
Status SliceInfo::GetInput(const ValuePtr &input_value, std::vector<int64_t> *input) {
MS_EXCEPTION_IF_NULL(input_value);
ValueTuplePtr value_tuple = input_value->cast<ValueTuplePtr>();
if (value_tuple == nullptr) {
MS_LOG(ERROR) << name_ << ": Input value must be ValueTuplePtr.";
return FAILED;
}
for (auto &element : value_tuple->value()) {
MS_EXCEPTION_IF_NULL(element);
if (element->isa<Int64Imm>()) {
int64_t value = element->cast<Int64ImmPtr>()->value();
input->push_back(value);
} else {
MS_LOG(ERROR) << name_ << ": The value must be int64";
return FAILED;
}
}
return SUCCESS;
}
Status SliceInfo::GetAttrs() {
if (input_value_.size() != SLICE_INPUTS_SIZE) {
MS_LOG(ERROR) << name_ << ": The size of input value must be " << SLICE_INPUTS_SIZE << ", but got "
<< input_value_.size();
return FAILED;
}
if ((GetInput(input_value_[SLICE_BEGIN_INDEX], &begin_) != SUCCESS) ||
(GetInput(input_value_[SLICE_SIZE_INDEX], &size_) != SUCCESS)) {
return FAILED;
}
return SUCCESS;
}
Status SliceInfo::CheckStrategy(const StrategyPtr &strategy) {
MS_EXCEPTION_IF_NULL(strategy);
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Invalid strategy";
return FAILED;
}
std::vector<Dimensions> stra = strategy->GetInputDim();
if (stra.empty()) {
MS_LOG(ERROR) << name_ << ": The strategy is empty";
return FAILED;
}
Dimensions strategy_value = stra[0];
for (size_t i = 0; i < begin_.size(); ++i) {
bool no_fully_fetch = ((begin_[i] != 0) || (size_[i] < inputs_shape_[0][i]));
if (no_fully_fetch && (strategy_value[i] != 1)) {
MS_LOG(ERROR) << name_ << ": When a dimension is not fully fetched, the dimension can not be split now";
return FAILED;
}
}
return SUCCESS;
}
Status SliceInfo::InferDevMatrixShape() {
MS_EXCEPTION_IF_NULL(strategy_);
std::vector<Dimensions> stra = strategy_->GetInputDim();
if (stra.empty()) {
MS_LOG(ERROR) << name_ << ": The strategy is empty";
return FAILED;
}
dev_matrix_shape_ = stra[0];
return SUCCESS;
}
Status SliceInfo::InferTensorMap() {
TensorMap tensor_map;
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
return FAILED;
}
// cannot use dev_matrix_shape_ replace inputs_shape_[0], because it may not be fully split in all devices.
int64_t size = SizeToInt(inputs_shape_[0].size());
for (int i = 0; i < size; ++i) {
tensor_map.push_back(size - i - 1);
}
inputs_tensor_map_.push_back(tensor_map);
outputs_tensor_map_.push_back(tensor_map);
return SUCCESS;
}
Status SliceInfo::InferMirrorOps() {
mirror_ops_.clear();
if (inputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty";
return FAILED;
}
Shape input_tensor_map = inputs_tensor_map_[0];
std::vector<Group> group;
if (CreateGroupByTensorMap(input_tensor_map, &group) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Create group for input failed.";
return FAILED;
}
if (group.empty()) {
MS_LOG(INFO) << name_ << ": The mirror group is empty.";
return SUCCESS;
}
OperatorVector input_op, begin_op, end_op;
input_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
mirror_ops_.push_back(input_op);
mirror_ops_.push_back(begin_op);
mirror_ops_.push_back(end_op);
return SUCCESS;
}
Status SliceInfo::InferTensorInfo() {
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": Invalid args";
return FAILED;
}
// infer tensor layout
TensorLayout input_layout, output_layout;
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
return FAILED;
}
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
return FAILED;
}
TensorInfo input_tensor_info(input_layout);
TensorInfo output_tensor_info(output_layout);
inputs_tensor_info_.push_back(input_tensor_info);
outputs_tensor_info_.push_back(output_tensor_info);
return SUCCESS;
}
// Note: if the batch dimension is not fully fetched, the batch strategy may not work.
std::shared_ptr<Strategys> SliceInfo::GenerateBatchStrategies() {
split_flag_list_ = {true};
return GenerateBatchStrategiesBySplitFlag(inputs_shape_, split_flag_list_);
}
Status SliceInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }
Status SliceInfo::GenerateStrategies(int64_t stage_id) {
if (InferAttrs() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer attrs failed";
return FAILED;
}
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
return FAILED;
}
Shape input_split(inputs_shape_[0].size(), 1);
for (size_t i = 0; i < begin_.size(); ++i) {
bool no_fully_fetch = ((begin_[i] != 0) || (size_[i] < inputs_shape_[0][i]));
if (no_fully_fetch) {
input_split[i] = 0;
}
}
Shapes splittable_inputs = {input_split};
std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
return FAILED;
}
size_t success = 0;
for (auto &sp : sp_vector) {
PrintStrategy(sp);
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
PrintStrategy(sp);
}
}
return SUCCESS;
}
Status SliceInfo::Init(const StrategyPtr &strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init success.";
return SUCCESS;
}
Status SliceInfo::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init for cost model success.";
return SUCCESS;
}
ReplaceGraphPtr SliceInfo::replace_graph(const CNodePtr &cnode) {
auto input_strategy = strategy_->GetInputDim().at(0);
if (std::any_of(input_strategy.begin(), input_strategy.end(), [](const int64_t &shard) { return shard > 1; })) {
if (ComputeReplaceGraph(cnode) != SUCCESS) {
MS_LOG(EXCEPTION) << name_ << ": InferReplaceOp failed.";
}
}
return replace_graph_;
}
AnfNodePtr CreateValueTupleAndNodePtr(const std::vector<int64_t> &value_tuple) {
auto value_ptr = MakeValue(value_tuple)->cast<ValueTuplePtr>();
auto value_node = NewValueNode(value_ptr);
return value_node->cast<AnfNodePtr>();
}
Status SliceInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
GenerateGraph gen_g = GenerateGraph();
if (gen_g.Init(cnode) != SUCCESS) {
MS_LOG(ERROR) << "GenerateGraph Init failed";
return FAILED;
}
Dimensions input_stra = strategy_->GetInputDim().at(0);
std::vector<int64_t> sliced_size_shape_int;
Shape input_slice_shape = inputs_tensor_info_[0].slice_shape();
for (uint64_t i = 0; i < size_.size(); i++) {
if (input_stra[i] == 1) {
sliced_size_shape_int.push_back(size_[i]);
} else {
sliced_size_shape_int.push_back(input_slice_shape[i]);
}
}
auto new_begin = CreateValueTupleAndNodePtr(begin_);
auto new_size = CreateValueTupleAndNodePtr(sliced_size_shape_int);
auto slice = gen_g.PushBack({gen_g.NewOpInst(SLICE), gen_g.virtual_input_node(), new_begin, new_size});
std::vector<std::pair<AnfNodePtr, int64_t>> input_nodes = {std::make_pair(slice, 1)};
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int64_t>>, AnfNodePtr>>(
std::make_pair(input_nodes, slice));
return SUCCESS;
}
} // namespace parallel
} // namespace mindspore

View File

@ -0,0 +1,69 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SLICE_INFO_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SLICE_INFO_H_
#include <string>
#include <memory>
#include <unordered_map>
#include <vector>
#include "ir/value.h"
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
#include "frontend/parallel/ops_info/operator_info.h"
#include "frontend/parallel/strategy.h"
namespace mindspore {
namespace parallel {
class SliceInfo : public OperatorInfo {
public:
SliceInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<SliceCost>(false)),
slice_axis_(-1) {}
~SliceInfo() override = default;
Status Init(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int64_t) override;
Status SetCostUnderStrategy(const StrategyPtr &) override;
std::shared_ptr<Strategys> GenerateBatchStrategies() override;
protected:
Status GetAttrs() override;
Status CheckStrategy(const StrategyPtr &strategy) override;
Status InferMirrorOps() override;
Status InferForwardCommunication() override { return SUCCESS; }
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferTensorMap() override;
ReplaceGraphPtr replace_graph(const CNodePtr &cnode) override;
private:
Status GetInput(const ValuePtr &input_value, std::vector<int64_t> *input);
Status ComputeReplaceGraph(const CNodePtr &cnode);
std::vector<int64_t> begin_;
std::vector<int64_t> size_;
int64_t slice_axis_;
};
using SliceInfoPtr = std::shared_ptr<SliceInfo>;
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SLICE_INFO_H_

View File

@ -59,7 +59,7 @@ Status GetInput(const ValuePtr &input_value, std::vector<int64_t> *input) {
int64_t value = element->cast<Int64ImmPtr>()->value();
input->push_back(value);
} else {
MS_LOG(ERROR) << "The value must be int32";
MS_LOG(ERROR) << "The value must be int64";
return FAILED;
}
}

View File

@ -317,7 +317,7 @@ bool IsSplittableOperator(const std::string &op_name) {
EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE,
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM,
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER};
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER, SLICE};
// clang-format on
auto iter = splittable_op.find(op_name);

View File

@ -0,0 +1,135 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.common.api import _executor
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(Cell):
def __init__(self, weight, w2, begin, end, strategy1=None, strategy2=None, is_parameter=True):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.slice = P.Slice().shard(strategy2)
if is_parameter:
self.weight = Parameter(weight, "w1")
else:
self.weight = weight
self.mul2 = P.Mul()
self.weight2 = Parameter(w2, "w2")
self.begin = begin
self.end = end
def construct(self, x, b):
out = self.slice(self.weight, self.begin, self.end)
out = self.mul(x, out)
out = self.mul2(out, self.weight2)
return out
class Net2(Cell):
def __init__(self, weight2, begin, end, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.slice = P.Slice().shard(strategy2)
self.weight2 = Parameter(weight2, "w2")
self.begin = begin
self.end = end
def construct(self, x, b):
out = self.mul(x, self.weight2)
out = self.slice(out, self.begin, self.end)
return out
_x = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
_w1 = Tensor(np.ones([256, 64, 32]), dtype=ms.float32)
_w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
def compile_net(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_slice_no_fully_fetch_split_error():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((2, 2, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=True)
with pytest.raises(RuntimeError):
compile_net(net)
def test_slice_parameter():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 1), (1, 4, 2))
strategy2 = ((1, 4, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2)
compile_net(net)
def test_slice_tensor():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 1), (1, 4, 2))
strategy2 = ((1, 4, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=False)
compile_net(net)
def test_slice_parameter_no_full_split():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 1), (1, 4, 2))
strategy2 = ((1, 2, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=True)
compile_net(net)
def test_slice_output():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 8, 1), (1, 8, 1))
strategy2 = ((1, 8, 1),)
net = Net2(_w2, (0, 0, 0), (64, 64, 1), strategy1, strategy2)
compile_net(net)
def test_stridedslice_output_no_full_split():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 8, 1), (1, 8, 1))
strategy2 = ((1, 4, 1),)
net = Net2(_w2, (0, 0, 0), (64, 64, 1), strategy1, strategy2)
compile_net(net)
def test_stridedslice_no_strategy():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 8, 1), (1, 8, 1))
strategy2 = None
net = Net2(_w2, (0, 0, 0), (128, 64, 1), strategy1, strategy2)
compile_net(net)
def test_slice_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net2(_w2, (0, 0, 0), (32, 64, 1))
compile_net(net)