forked from mindspore-Ecosystem/mindspore
!8289 Add Parallel Implements of Slice Op
From: @huangxinjing Reviewed-by: Signed-off-by:
This commit is contained in:
commit
f827c18f1d
|
@ -172,6 +172,8 @@ using TransposeCost = ActivationCost;
|
|||
using TransposeCostPtr = std::shared_ptr<TransposeCost>;
|
||||
using StridedSliceCost = ActivationCost;
|
||||
using StridedSliceCostPtr = std::shared_ptr<StridedSliceCost>;
|
||||
using SliceCost = ActivationCost;
|
||||
using SliceCostPtr = std::shared_ptr<SliceCost>;
|
||||
using SplitCost = ActivationCost;
|
||||
using SplitCostPtr = std::shared_ptr<SplitCost>;
|
||||
|
||||
|
|
|
@ -184,6 +184,7 @@ REGISTER(EmbeddingLookupInfo);
|
|||
REGISTER(TileInfo);
|
||||
REGISTER(BroadcastToInfo);
|
||||
REGISTER(StridedSliceInfo);
|
||||
REGISTER(SliceInfo);
|
||||
REGISTER(DropoutInfo);
|
||||
REGISTER(PackInfo);
|
||||
REGISTER(ConcatInfo);
|
||||
|
|
|
@ -40,6 +40,7 @@
|
|||
#include "frontend/parallel/ops_info/gather_v2_p_info.h"
|
||||
#include "frontend/parallel/ops_info/tile_info.h"
|
||||
#include "frontend/parallel/ops_info/strided_slice_info.h"
|
||||
#include "frontend/parallel/ops_info/slice_info.h"
|
||||
#include "frontend/parallel/ops_info/concat_info.h"
|
||||
#include "frontend/parallel/ops_info/split_info.h"
|
||||
#include "frontend/parallel/ops_info/tensordot_info.h"
|
||||
|
|
|
@ -29,6 +29,9 @@ constexpr int64_t NO_SPLIT_STRATEGY = 1;
|
|||
constexpr int64_t SPLIT_FLAG = 1;
|
||||
constexpr int64_t NO_SPLIT_FLAG = 0;
|
||||
constexpr size_t MATMUL_ATTRS_SIZE = 2;
|
||||
constexpr size_t SLICE_BEGIN_INDEX = 1;
|
||||
constexpr size_t SLICE_SIZE_INDEX = 2;
|
||||
constexpr size_t SLICE_INPUTS_SIZE = 3;
|
||||
constexpr size_t STRIDED_SLICE_ATTRS_SIZE = 5;
|
||||
constexpr size_t STRIDED_SLICE_INPUTS_SIZE = 4;
|
||||
constexpr size_t STRIDED_SLICE_BEGIN_INDEX = 1;
|
||||
|
@ -98,6 +101,7 @@ constexpr char ELLIPSIS_MASK[] = "ellipsis_mask";
|
|||
constexpr char NEW_AXIS_MASK[] = "new_axis_mask";
|
||||
constexpr char SHRINK_AXIS_MASK[] = "shrink_axis_mask";
|
||||
constexpr char BEGIN[] = "begin";
|
||||
constexpr char SIZE[] = "size";
|
||||
constexpr char END[] = "end";
|
||||
constexpr char STRIDES[] = "strides";
|
||||
constexpr char GROUP[] = "group";
|
||||
|
@ -241,6 +245,7 @@ constexpr char LOGICALNOT[] = "LogicalNot";
|
|||
constexpr char GATHERV2[] = "GatherV2";
|
||||
constexpr char SPARSE_GATHERV2[] = "SparseGatherV2";
|
||||
constexpr char STRIDEDSLICE[] = "StridedSlice";
|
||||
constexpr char SLICE[] = "Slice";
|
||||
constexpr char BROADCAST[] = "Broadcast";
|
||||
constexpr char BROADCAST_TO[] = "BroadcastTo";
|
||||
constexpr char SQRT[] = "Sqrt";
|
||||
|
|
|
@ -0,0 +1,284 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "frontend/parallel/ops_info/slice_info.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "frontend/parallel/device_matrix.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
#include "frontend/parallel/graph_util/generate_graph.h"
|
||||
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
|
||||
#include "pipeline/jit/resource.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
Status SliceInfo::GetInput(const ValuePtr &input_value, std::vector<int64_t> *input) {
|
||||
MS_EXCEPTION_IF_NULL(input_value);
|
||||
ValueTuplePtr value_tuple = input_value->cast<ValueTuplePtr>();
|
||||
if (value_tuple == nullptr) {
|
||||
MS_LOG(ERROR) << name_ << ": Input value must be ValueTuplePtr.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
for (auto &element : value_tuple->value()) {
|
||||
MS_EXCEPTION_IF_NULL(element);
|
||||
if (element->isa<Int64Imm>()) {
|
||||
int64_t value = element->cast<Int64ImmPtr>()->value();
|
||||
input->push_back(value);
|
||||
} else {
|
||||
MS_LOG(ERROR) << name_ << ": The value must be int64";
|
||||
return FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status SliceInfo::GetAttrs() {
|
||||
if (input_value_.size() != SLICE_INPUTS_SIZE) {
|
||||
MS_LOG(ERROR) << name_ << ": The size of input value must be " << SLICE_INPUTS_SIZE << ", but got "
|
||||
<< input_value_.size();
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if ((GetInput(input_value_[SLICE_BEGIN_INDEX], &begin_) != SUCCESS) ||
|
||||
(GetInput(input_value_[SLICE_SIZE_INDEX], &size_) != SUCCESS)) {
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status SliceInfo::CheckStrategy(const StrategyPtr &strategy) {
|
||||
MS_EXCEPTION_IF_NULL(strategy);
|
||||
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid strategy";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
std::vector<Dimensions> stra = strategy->GetInputDim();
|
||||
if (stra.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The strategy is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
Dimensions strategy_value = stra[0];
|
||||
|
||||
for (size_t i = 0; i < begin_.size(); ++i) {
|
||||
bool no_fully_fetch = ((begin_[i] != 0) || (size_[i] < inputs_shape_[0][i]));
|
||||
if (no_fully_fetch && (strategy_value[i] != 1)) {
|
||||
MS_LOG(ERROR) << name_ << ": When a dimension is not fully fetched, the dimension can not be split now";
|
||||
return FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status SliceInfo::InferDevMatrixShape() {
|
||||
MS_EXCEPTION_IF_NULL(strategy_);
|
||||
std::vector<Dimensions> stra = strategy_->GetInputDim();
|
||||
if (stra.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The strategy is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
dev_matrix_shape_ = stra[0];
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status SliceInfo::InferTensorMap() {
|
||||
TensorMap tensor_map;
|
||||
if (inputs_shape_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
// cannot use dev_matrix_shape_ replace inputs_shape_[0], because it may not be fully split in all devices.
|
||||
int64_t size = SizeToInt(inputs_shape_[0].size());
|
||||
for (int i = 0; i < size; ++i) {
|
||||
tensor_map.push_back(size - i - 1);
|
||||
}
|
||||
|
||||
inputs_tensor_map_.push_back(tensor_map);
|
||||
outputs_tensor_map_.push_back(tensor_map);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status SliceInfo::InferMirrorOps() {
|
||||
mirror_ops_.clear();
|
||||
if (inputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty";
|
||||
return FAILED;
|
||||
}
|
||||
Shape input_tensor_map = inputs_tensor_map_[0];
|
||||
std::vector<Group> group;
|
||||
if (CreateGroupByTensorMap(input_tensor_map, &group) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Create group for input failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (group.empty()) {
|
||||
MS_LOG(INFO) << name_ << ": The mirror group is empty.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
OperatorVector input_op, begin_op, end_op;
|
||||
input_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
|
||||
mirror_ops_.push_back(input_op);
|
||||
mirror_ops_.push_back(begin_op);
|
||||
mirror_ops_.push_back(end_op);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status SliceInfo::InferTensorInfo() {
|
||||
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid args";
|
||||
return FAILED;
|
||||
}
|
||||
// infer tensor layout
|
||||
TensorLayout input_layout, output_layout;
|
||||
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
TensorInfo input_tensor_info(input_layout);
|
||||
TensorInfo output_tensor_info(output_layout);
|
||||
|
||||
inputs_tensor_info_.push_back(input_tensor_info);
|
||||
outputs_tensor_info_.push_back(output_tensor_info);
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
// Note: if the batch dimension is not fully fetched, the batch strategy may not work.
|
||||
std::shared_ptr<Strategys> SliceInfo::GenerateBatchStrategies() {
|
||||
split_flag_list_ = {true};
|
||||
return GenerateBatchStrategiesBySplitFlag(inputs_shape_, split_flag_list_);
|
||||
}
|
||||
|
||||
Status SliceInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }
|
||||
|
||||
Status SliceInfo::GenerateStrategies(int64_t stage_id) {
|
||||
if (InferAttrs() != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer attrs failed";
|
||||
return FAILED;
|
||||
}
|
||||
if (inputs_shape_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
|
||||
return FAILED;
|
||||
}
|
||||
Shape input_split(inputs_shape_[0].size(), 1);
|
||||
for (size_t i = 0; i < begin_.size(); ++i) {
|
||||
bool no_fully_fetch = ((begin_[i] != 0) || (size_[i] < inputs_shape_[0][i]));
|
||||
if (no_fully_fetch) {
|
||||
input_split[i] = 0;
|
||||
}
|
||||
}
|
||||
Shapes splittable_inputs = {input_split};
|
||||
|
||||
std::vector<StrategyPtr> sp_vector;
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
size_t success = 0;
|
||||
for (auto &sp : sp_vector) {
|
||||
PrintStrategy(sp);
|
||||
if (SetCostUnderStrategy(sp) == SUCCESS) {
|
||||
success++;
|
||||
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
|
||||
PrintStrategy(sp);
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status SliceInfo::Init(const StrategyPtr &strategy) {
|
||||
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init failed.";
|
||||
return FAILED;
|
||||
}
|
||||
MS_LOG(INFO) << name_ << ": Init success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status SliceInfo::InitForCostModel(const StrategyPtr &strategy) {
|
||||
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << name_ << ": Init for cost model success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
ReplaceGraphPtr SliceInfo::replace_graph(const CNodePtr &cnode) {
|
||||
auto input_strategy = strategy_->GetInputDim().at(0);
|
||||
if (std::any_of(input_strategy.begin(), input_strategy.end(), [](const int64_t &shard) { return shard > 1; })) {
|
||||
if (ComputeReplaceGraph(cnode) != SUCCESS) {
|
||||
MS_LOG(EXCEPTION) << name_ << ": InferReplaceOp failed.";
|
||||
}
|
||||
}
|
||||
return replace_graph_;
|
||||
}
|
||||
|
||||
AnfNodePtr CreateValueTupleAndNodePtr(const std::vector<int64_t> &value_tuple) {
|
||||
auto value_ptr = MakeValue(value_tuple)->cast<ValueTuplePtr>();
|
||||
auto value_node = NewValueNode(value_ptr);
|
||||
return value_node->cast<AnfNodePtr>();
|
||||
}
|
||||
|
||||
Status SliceInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
|
||||
GenerateGraph gen_g = GenerateGraph();
|
||||
if (gen_g.Init(cnode) != SUCCESS) {
|
||||
MS_LOG(ERROR) << "GenerateGraph Init failed";
|
||||
return FAILED;
|
||||
}
|
||||
Dimensions input_stra = strategy_->GetInputDim().at(0);
|
||||
|
||||
std::vector<int64_t> sliced_size_shape_int;
|
||||
Shape input_slice_shape = inputs_tensor_info_[0].slice_shape();
|
||||
for (uint64_t i = 0; i < size_.size(); i++) {
|
||||
if (input_stra[i] == 1) {
|
||||
sliced_size_shape_int.push_back(size_[i]);
|
||||
} else {
|
||||
sliced_size_shape_int.push_back(input_slice_shape[i]);
|
||||
}
|
||||
}
|
||||
auto new_begin = CreateValueTupleAndNodePtr(begin_);
|
||||
auto new_size = CreateValueTupleAndNodePtr(sliced_size_shape_int);
|
||||
|
||||
auto slice = gen_g.PushBack({gen_g.NewOpInst(SLICE), gen_g.virtual_input_node(), new_begin, new_size});
|
||||
|
||||
std::vector<std::pair<AnfNodePtr, int64_t>> input_nodes = {std::make_pair(slice, 1)};
|
||||
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int64_t>>, AnfNodePtr>>(
|
||||
std::make_pair(input_nodes, slice));
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,69 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SLICE_INFO_H_
|
||||
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SLICE_INFO_H_
|
||||
|
||||
#include <string>
|
||||
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
|
||||
#include "frontend/parallel/ops_info/operator_info.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
class SliceInfo : public OperatorInfo {
|
||||
public:
|
||||
SliceInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<SliceCost>(false)),
|
||||
slice_axis_(-1) {}
|
||||
~SliceInfo() override = default;
|
||||
|
||||
Status Init(const StrategyPtr &strategy) override;
|
||||
Status InitForCostModel(const StrategyPtr &strategy) override;
|
||||
Status GenerateStrategies(int64_t) override;
|
||||
Status SetCostUnderStrategy(const StrategyPtr &) override;
|
||||
std::shared_ptr<Strategys> GenerateBatchStrategies() override;
|
||||
|
||||
protected:
|
||||
Status GetAttrs() override;
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status InferMirrorOps() override;
|
||||
Status InferForwardCommunication() override { return SUCCESS; }
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status InferTensorMap() override;
|
||||
ReplaceGraphPtr replace_graph(const CNodePtr &cnode) override;
|
||||
|
||||
private:
|
||||
Status GetInput(const ValuePtr &input_value, std::vector<int64_t> *input);
|
||||
Status ComputeReplaceGraph(const CNodePtr &cnode);
|
||||
std::vector<int64_t> begin_;
|
||||
std::vector<int64_t> size_;
|
||||
int64_t slice_axis_;
|
||||
};
|
||||
|
||||
using SliceInfoPtr = std::shared_ptr<SliceInfo>;
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SLICE_INFO_H_
|
|
@ -59,7 +59,7 @@ Status GetInput(const ValuePtr &input_value, std::vector<int64_t> *input) {
|
|||
int64_t value = element->cast<Int64ImmPtr>()->value();
|
||||
input->push_back(value);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "The value must be int32";
|
||||
MS_LOG(ERROR) << "The value must be int64";
|
||||
return FAILED;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -317,7 +317,7 @@ bool IsSplittableOperator(const std::string &op_name) {
|
|||
EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE,
|
||||
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
|
||||
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM,
|
||||
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER};
|
||||
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER, SLICE};
|
||||
// clang-format on
|
||||
|
||||
auto iter = splittable_op.find(op_name);
|
||||
|
|
|
@ -0,0 +1,135 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, weight, w2, begin, end, strategy1=None, strategy2=None, is_parameter=True):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.slice = P.Slice().shard(strategy2)
|
||||
if is_parameter:
|
||||
self.weight = Parameter(weight, "w1")
|
||||
else:
|
||||
self.weight = weight
|
||||
self.mul2 = P.Mul()
|
||||
self.weight2 = Parameter(w2, "w2")
|
||||
self.begin = begin
|
||||
self.end = end
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.slice(self.weight, self.begin, self.end)
|
||||
out = self.mul(x, out)
|
||||
out = self.mul2(out, self.weight2)
|
||||
return out
|
||||
|
||||
|
||||
class Net2(Cell):
|
||||
def __init__(self, weight2, begin, end, strategy1=None, strategy2=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.slice = P.Slice().shard(strategy2)
|
||||
self.weight2 = Parameter(weight2, "w2")
|
||||
self.begin = begin
|
||||
self.end = end
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.weight2)
|
||||
out = self.slice(out, self.begin, self.end)
|
||||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([256, 64, 32]), dtype=ms.float32)
|
||||
_w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_slice_no_fully_fetch_split_error():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((2, 2, 2), (2, 2, 2))
|
||||
strategy2 = ((2, 2, 2),)
|
||||
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=True)
|
||||
with pytest.raises(RuntimeError):
|
||||
compile_net(net)
|
||||
|
||||
def test_slice_parameter():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 4, 1), (1, 4, 2))
|
||||
strategy2 = ((1, 4, 2),)
|
||||
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_slice_tensor():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 4, 1), (1, 4, 2))
|
||||
strategy2 = ((1, 4, 2),)
|
||||
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=False)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_slice_parameter_no_full_split():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 4, 1), (1, 4, 2))
|
||||
strategy2 = ((1, 2, 2),)
|
||||
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=True)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_slice_output():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 8, 1), (1, 8, 1))
|
||||
strategy2 = ((1, 8, 1),)
|
||||
net = Net2(_w2, (0, 0, 0), (64, 64, 1), strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_stridedslice_output_no_full_split():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 8, 1), (1, 8, 1))
|
||||
strategy2 = ((1, 4, 1),)
|
||||
net = Net2(_w2, (0, 0, 0), (64, 64, 1), strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_stridedslice_no_strategy():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 8, 1), (1, 8, 1))
|
||||
strategy2 = None
|
||||
net = Net2(_w2, (0, 0, 0), (128, 64, 1), strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_slice_auto_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net2(_w2, (0, 0, 0), (32, 64, 1))
|
||||
compile_net(net)
|
Loading…
Reference in New Issue