forked from mindspore-Ecosystem/mindspore
fix dpn&xception spelling error
This commit is contained in:
parent
8a61767f32
commit
f6eccdb4b0
|
@ -183,7 +183,7 @@ For example, you can run the shell command below to launch the training procedur
|
|||
sh scripts/train_standalone.sh 0 /data/dataset/imagenet/ scripts/pretrian/ 0
|
||||
```
|
||||
|
||||
If eval_each_epoch is 1, it will evaluate after each epoch and save the parameters with the max accurracy. But in this case, the time of one epoch will be longer.
|
||||
If eval_each_epoch is 1, it will evaluate after each epoch and save the parameters with the max accuracy. But in this case, the time of one epoch will be longer.
|
||||
|
||||
If eval_each_epoch is 0, it will save parameters every some epochs instead of evaluating in the training process.
|
||||
|
||||
|
|
|
@ -91,7 +91,7 @@ def dpn_train(args):
|
|||
context.set_auto_parallel_context(device_num=args.group_size, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
|
||||
# select for master rank save ckpt or all rank save, compatiable for model parallel
|
||||
# select for master rank save ckpt or all rank save, compatible for model parallel
|
||||
args.rank_save_ckpt_flag = 0
|
||||
if args.is_save_on_master:
|
||||
if args.rank == 0:
|
||||
|
|
|
@ -148,7 +148,7 @@ sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
|
|||
|
||||
### Result
|
||||
|
||||
Training result will be stored in the example path. Checkpoints will be stored at `. /ckpt_0` by default, and training log will be redirected to `log.txt` like followings.
|
||||
Training result will be stored in the example path. Checkpoints will be stored at `. /ckpt_0` by default, and training log will be redirected to `log.txt` like following.
|
||||
|
||||
``` shell
|
||||
epoch: 1 step: 1251, loss is 4.8427444
|
||||
|
@ -182,7 +182,7 @@ sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
|
|||
|
||||
### Result
|
||||
|
||||
Evaluation result will be stored in the example path, you can find result like the followings in `eval.log`.
|
||||
Evaluation result will be stored in the example path, you can find result like the following in `eval.log`.
|
||||
|
||||
```shell
|
||||
result: {'Loss': 1.7797744848789312, 'Top_1_Acc': 0.7985777243589743, 'Top_5_Acc': 0.9485777243589744}
|
||||
|
|
Loading…
Reference in New Issue