support reshape redistribution in all scenes

This commit is contained in:
yao_yf 2020-10-13 14:52:46 +08:00
parent 478200d2fe
commit f60d81a15f
9 changed files with 312 additions and 22 deletions

View File

@ -488,10 +488,7 @@ Status ReshapeInfo::GenetateStrategyCosts(const std::vector<std::shared_ptr<Stra
}
TensorInfo next_in_tensor_info = next_in_tensor_infos[in_index];
SetOutputLayout(next_in_tensor_info.tensor_layout());
if (Init(nullptr) == FAILED) {
MS_LOG(DEBUG) << "Failure:operator reshape init failed";
continue;
}
InferTensorInfoByLayout();
SetCostForReshape(reshape_stra);
}
}

View File

@ -63,6 +63,14 @@ std::shared_ptr<ReshapeLayoutTransfer> RedistributionLayoutTransfer::UnifyDevice
if (unified_device_arrangement_ptr == nullptr) {
return nullptr;
}
Shape in_expand_shape;
Status status = ExpandShape(unified_device_arrangement_ptr->from_in().tensor_shape().array(),
unified_device_arrangement_ptr->to_in().tensor_shape().array(), &in_expand_shape);
if (status != Status::SUCCESS) {
MS_LOG(INFO) << "The shape of from and to cannot transfer by unify";
unified_device_arrangement_ptr->SetExpandAble(false);
return unified_device_arrangement_ptr;
}
return unified_device_arrangement_ptr->UnifyDeviceArrangementAndTensorShape();
}
} // namespace parallel

View File

@ -35,12 +35,15 @@ class ReshapeLayoutTransfer : public LayoutTransfer {
std::shared_ptr<ReshapeLayoutTransfer> ExpandFromTensorShapeAndExpandToDeviceArrangement(
const Arrangement &expand_shape) const;
std::shared_ptr<ReshapeLayoutTransfer> ExchangeFromAndTo() const;
bool ExpandAble() const { return is_expand_able_; }
bool FromTensorShapeCanBeExpandByTo() const;
bool ToTensorShapeCanBeExpandByFrom() const;
void SetExpandAble(const bool is_expand_able) { is_expand_able_ = is_expand_able; }
private:
Status CheckValidTransfer() override;
std::shared_ptr<Arrangement> ComputeExpandedFromTensorShapeByTo() const;
bool FromTensorShapeCanBeExpandByTo() const;
bool ToTensorShapeCanBeExpandByFrom() const;
bool is_expand_able_ = true;
};
} // namespace parallel
} // namespace mindspore

View File

@ -97,11 +97,11 @@ Status AccumulateProductReverseToShape(const Shape &shape_accum_reverse, Shape *
int64_t value = 1;
for (auto iter = shape_accum_reverse.end() - 1; iter >= shape_accum_reverse.begin(); --iter) {
if (*iter == 0) {
MS_LOG(ERROR) << "element of shape_accum should not be zero";
MS_LOG(WARNING) << "element of shape_accum should not be zero";
return Status::FAILED;
}
if ((*iter) % value != 0) {
MS_LOG(ERROR) << "shape_accum is not a accumulate product in ascending order";
MS_LOG(WARNING) << "shape_accum is not a accumulate product in ascending order";
return Status::FAILED;
}
(void)shape->insert(shape->begin(), static_cast<int64_t>((*iter) / value));

View File

@ -390,6 +390,15 @@ TensorLayout TensorLayout::SqueezeShape() const {
return out;
}
TensorLayout TensorLayout::TransferRepeatLayout() const {
Shape dev_mat(device_arrangement_.array());
Shape tensor_map(tensor_map_.GetDimSize(), -1);
Shape tensor_shape(tensor_shape_.array());
TensorLayout repeat;
repeat.InitFromVector(dev_mat, tensor_map, tensor_shape);
return repeat;
}
// Generate a totally shard tensor slice shape for parallel optimizer
Status TensorLayout::GenerateOptShardSliceShape() {
MS_LOG(INFO) << "layout for GetOptShardSliceShape is " << StandardToString();

View File

@ -88,6 +88,8 @@ class TensorLayout {
TensorLayout SqueezeShape() const;
TensorLayout TransferRepeatLayout() const;
Status GenerateOptShardSliceShape();
Shape opt_shard_slice_shape() { return opt_shard_slice_shape_; }

View File

@ -39,6 +39,42 @@ Status TensorRedistribution::Init(const TensorLayout &from, const TensorLayout &
return Status::SUCCESS;
}
RedistributionOpListPtr TensorRedistribution::InferTensorRedistributionOperatorListUnExpand(bool is_cost_model) {
TensorLayout from_repeat = from_origin_.TransferRepeatLayout();
TensorLayout to_repeat = to_origin_.TransferRepeatLayout();
MS_LOG(DEBUG) << "reshape from_repeat " << from_repeat.ToString();
MS_LOG(DEBUG) << "reshape to_layout " << to_repeat.ToString();
MS_LOG(DEBUG) << "reshape from_origin_ " << from_origin_.ToString();
MS_LOG(DEBUG) << "reshape to_origin_ " << to_origin_.ToString();
MS_LOG(DEBUG) << "reshape from_ " << from_.ToString();
MS_LOG(DEBUG) << "reshape to_ " << to_.ToString();
OperatorVector operator_vector;
OutPutInfoVector output_info_vector;
if (InferRedistribution(from_origin_, from_repeat, &operator_vector, &output_info_vector, is_cost_model) ==
Status::FAILED) {
return nullptr;
}
if (from_repeat.slice_shape().array() != to_repeat.slice_shape().array()) {
reshape_flag_ = true;
ConstructOperator constructor;
constructor.UpdateTensorShape(from_repeat.slice_shape().array());
Arrangement shape = to_repeat.slice_shape();
MS_LOG(DEBUG) << "reshape " << shape.ToString();
if (constructor.ReshapeOP(shape.array()) == Status::FAILED) {
return nullptr;
} else {
(void)operator_vector.push_back(constructor.GetOperator());
(void)output_info_vector.push_back(std::make_pair(false, 0));
}
}
if (InferRedistribution(to_repeat, to_origin_, &operator_vector, &output_info_vector, is_cost_model) ==
Status::FAILED) {
return nullptr;
}
return std::make_shared<std::pair<OperatorVector, OutPutInfoVector>>(
std::make_pair(operator_vector, output_info_vector));
}
RedistributionOpListPtr TensorRedistribution::InferTensorRedistributionOperatorList(bool is_cost_model) {
// Step 1: Match device arrangement between from_ and to_
RedistributionLayoutTransfer layout_transfer;
@ -51,6 +87,10 @@ RedistributionOpListPtr TensorRedistribution::InferTensorRedistributionOperatorL
MS_LOG(ERROR) << "Infer tensor layout return nullptr!";
return nullptr;
}
if (!ptr->ExpandAble()) {
expand_able_ = false;
return InferTensorRedistributionOperatorListUnExpand(is_cost_model);
}
TensorLayout from_layout = ptr->from_in();
TensorLayout to_layout = ptr->to_in();
MS_LOG(DEBUG) << "reshape from_layout " << from_layout.ToString();
@ -61,27 +101,17 @@ RedistributionOpListPtr TensorRedistribution::InferTensorRedistributionOperatorL
MS_LOG(DEBUG) << "reshape to_ " << to_.ToString();
// Step 2: Infer redistribution and insert operators
RedistributionOperatorInfer operator_infer(construct_op_flag_);
if (operator_infer.Init(from_layout, to_layout.tensor_map(), dev_list_, is_cost_model) == Status::FAILED) {
MS_LOG(ERROR) << "Init operatorInfer failed!";
return nullptr;
}
OperatorVector operator_vector;
OutPutInfoVector output_info_vector;
if (operator_infer.InferRedistributionOperator() != Status::SUCCESS) {
MS_LOG(ERROR) << "Infer redistribution failed!";
if (InferRedistribution(from_layout, to_layout, &operator_vector, &output_info_vector, is_cost_model) !=
Status::SUCCESS) {
return nullptr;
} else {
operator_vector = operator_infer.operator_vector();
output_info_vector = operator_infer.output_info_vector();
operator_list_ = operator_infer.operator_list();
}
// Step 3: Infer reshape and insert operators
if (InferReshape(from_layout, to_layout, &operator_vector, &output_info_vector) != Status::SUCCESS) {
MS_LOG(ERROR) << "Construct Reshape operator failed!";
return nullptr;
}
return std::make_shared<std::pair<OperatorVector, OutPutInfoVector>>(
std::make_pair(operator_vector, output_info_vector));
}
@ -136,6 +166,31 @@ Status TensorRedistribution::InferReshape(const TensorLayout &from_layout, const
return Status::SUCCESS;
}
Status TensorRedistribution::InferRedistribution(const TensorLayout &from_layout, const TensorLayout &to_layout,
OperatorVector *const operator_vector,
OutPutInfoVector *const output_info_vector, bool is_cost_model) {
RedistributionOperatorInfer operator_infer(construct_op_flag_);
if (operator_infer.Init(from_layout, to_layout.tensor_map(), dev_list_, is_cost_model) == Status::FAILED) {
MS_LOG(ERROR) << "Init operatorInfer failed";
return Status::FAILED;
}
if (operator_infer.InferRedistributionOperator() != Status::SUCCESS) {
MS_LOG(ERROR) << "Infer redistribution failed";
return Status::FAILED;
} else {
for (auto op : operator_infer.operator_vector()) {
operator_vector->insert(operator_vector->end(), op);
}
for (auto info : operator_infer.output_info_vector()) {
output_info_vector->insert(output_info_vector->end(), info);
}
for (auto opc : operator_infer.operator_list()) {
operator_list_.insert(operator_list_.end(), opc);
}
}
return Status::SUCCESS;
}
Status TensorRedistribution::ComputeCost() {
RedistributionOpListPtr redistribution_oplist_ptr = InferTensorRedistributionOperatorList(true);
if (redistribution_oplist_ptr == nullptr) {
@ -162,8 +217,13 @@ Status TensorRedistribution::ComputeCost() {
}
}
if (reshape_flag()) {
Shape prev_slice_shape = from_.slice_shape().array();
double prev_prod = std::accumulate(prev_slice_shape.begin(), prev_slice_shape.end(), 1, std::multiplies<int>());
Shape prev_shape;
if (expand_able_) {
prev_shape = from_.slice_shape().array();
} else {
prev_shape = from_.tensor_shape().array();
}
double prev_prod = std::accumulate(prev_shape.begin(), prev_shape.end(), 1, std::multiplies<int>());
computation_cost_ += 2.0 * prev_prod;
memory_cost_ += 2.0 * prev_prod;
}

View File

@ -61,8 +61,12 @@ class TensorRedistribution {
private:
Status InferReshape(const TensorLayout &from_layout, const TensorLayout &to_layout,
OperatorVector *const operator_vector, OutPutInfoVector *const output_info_vector);
Status InferRedistribution(const TensorLayout &from_layout, const TensorLayout &to_layout,
OperatorVector *const operator_vector, OutPutInfoVector *const output_info_vector,
bool is_cost_model);
Status ComputeConcatCost(double input_size, Shape attrs);
Status ComputePermuteCost(double input_size, Shape attrs);
RedistributionOpListPtr InferTensorRedistributionOperatorListUnExpand(bool is_cost_model = false);
TensorLayout from_origin_;
TensorLayout to_origin_;
TensorLayout from_;
@ -84,6 +88,7 @@ class TensorRedistribution {
double memory_cost_;
bool construct_op_flag_;
bool keep_reshape_;
bool expand_able_ = true;
};
} // namespace parallel
} // namespace mindspore

View File

@ -0,0 +1,206 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.common.parameter import Parameter
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x):
predict = self.network(x)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x):
return grad_all(self.network)(x)
def test_reshape_unexpand():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.reshape = P.Reshape()
self.mul = P.Mul().shard(((1, 8), (1, 1, 8)))
self.mul_weight = Parameter(Tensor(np.ones([96, 128]), dtype=ms.float32), name="weight")
def construct(self, x):
weight = self.reshape(self.mul_weight, (1, 128, 96))
out = self.mul(x, weight)
return out
size = 8
context.set_auto_parallel_context(device_num=size, global_rank=0)
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
_executor.compile(net, x)
def test_reshape_unexpand_1():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.reshape = P.Reshape()
self.mul = P.Mul().shard(((1, 8), (1, 1, 8)))
self.mul_weight = Parameter(Tensor(np.ones([96, 128]), dtype=ms.float32), name="weight")
def construct(self, x):
weight = self.reshape(self.mul_weight, (1, 128, 96))
out = self.mul(x, weight)
return out
size = 8
context.set_auto_parallel_context(device_num=size, global_rank=0)
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
_executor.compile(net, x)
def test_reshape_unexpand_2():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.reshape = P.Reshape()
self.mul = P.Mul().shard(((1, 4, 2), (4, 2)))
self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
def construct(self, data):
x = self.reshape(self.mul_weight, (1, 128, 96))
out = self.mul(x, self.mul_weight)
return out
size = 8
context.set_auto_parallel_context(device_num=size, global_rank=0)
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
_executor.compile(net, x)
def test_reshape_unexpand_3():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.reshape = P.Reshape()
self.relu1 = P.ReLU().shard(((4, 1),))
self.relu2 = P.ReLU().shard(((1, 4),))
def construct(self, data):
x = self.relu1(data)
x = self.reshape(x, (3, 4))
x = self.relu2(x)
return x
size = 4
context.set_auto_parallel_context(device_num=size, global_rank=0)
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
_executor.compile(net, x)
def test_reshape_unexpand_4():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.reshape = P.Reshape()
self.relu1 = P.ReLU().shard(((4, 1),))
self.relu2 = P.ReLU().shard(((1, 2, 2),))
def construct(self, data):
x = self.relu1(data)
x = self.reshape(x, (3, 2, 2))
x = self.relu2(x)
return x
size = 4
context.set_auto_parallel_context(device_num=size, global_rank=0)
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
_executor.compile(net, x)
def test_reshape_unexpand_5():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.reshape = P.Reshape()
self.relu1 = P.ReLU().shard(((2, 2, 1),))
self.relu2 = P.ReLU().shard(((1, 4),))
def construct(self, data):
x = self.relu1(data)
x = self.reshape(x, (3, 4))
x = self.relu2(x)
return x
size = 4
context.set_auto_parallel_context(device_num=size, global_rank=0)
x = Tensor(np.ones([2, 2, 3]), dtype=ms.float32)
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
_executor.compile(net, x)
def test_reshape_unexpand_6():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.reshape = P.Reshape()
self.relu1 = P.ReLU().shard(((2, 1),))
self.relu2 = P.ReLU().shard(((1, 1, 4),))
def construct(self, data):
x = self.relu1(data)
x = self.reshape(x, (1, 3, 4))
x = self.relu2(x)
return x
size = 4
context.set_auto_parallel_context(device_num=size, global_rank=0)
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
_executor.compile(net, x)