!9985 Add Squeeze New

From: @ZhengQihao3f3f3f
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-12-16 09:14:35 +08:00 committed by Gitee
commit f3b41531b7
2 changed files with 73 additions and 0 deletions

View File

@ -62,6 +62,14 @@ MS_REG_CPU_KERNEL(ExpandDims, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOut
ReshapeCPUKernel);
MS_REG_CPU_KERNEL(ExpandDims, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
ReshapeCPUKernel);
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ReshapeCPUKernel);
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ReshapeCPUKernel);
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
ReshapeCPUKernel);
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool), ReshapeCPUKernel);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,65 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn import Cell
import mindspore.ops as P
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class SqueezeNet(Cell):
def __init__(self):
super(SqueezeNet, self).__init__()
self.squeeze = P.Squeeze()
def construct(self, x):
return self.squeeze(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_squeeze_shape_float32():
x = np.ones(shape=[1, 2, 1, 1, 8, 3, 1]).astype(np.float32)
expect = np.ones(shape=[2, 8, 3]).astype(np.float32)
net = SqueezeNet()
result = net(Tensor(x))
assert np.allclose(result.asnumpy(), expect, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_squeeze_shape_int32():
x = np.array([[7], [11]]).astype(np.int32)
expect = np.array([7, 11]).astype(np.int32)
net = SqueezeNet()
result = net(Tensor(x))
assert np.allclose(result.asnumpy(), expect, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_squeeze_shape_bool():
x = np.array([[True], [False]]).astype(np.bool_)
expect = np.array([True, False]).astype(np.bool_)
net = SqueezeNet()
result = net(Tensor(x))
assert np.allclose(result.asnumpy(), expect, rtol=1.e-4, atol=1.e-8, equal_nan=True)