forked from mindspore-Ecosystem/mindspore
!13591 use same network in the TrainOneStepCell
From: @huangbingjian Reviewed-by: @ginfung,@zh_qh Signed-off-by: @zh_qh
This commit is contained in:
commit
f3453ef22c
|
@ -46,8 +46,6 @@ class LossCallBack(Callback):
|
|||
self._per_print_times = per_print_times
|
||||
self.count = 0
|
||||
self.rpn_loss_sum = 0
|
||||
self.rpn_cls_loss_sum = 0
|
||||
self.rpn_reg_loss_sum = 0
|
||||
self.rank_id = rank_id
|
||||
|
||||
global time_stamp_init, time_stamp_first
|
||||
|
@ -57,14 +55,10 @@ class LossCallBack(Callback):
|
|||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
rpn_loss = cb_params.net_outputs[0].asnumpy()
|
||||
rpn_cls_loss = cb_params.net_outputs[1].asnumpy()
|
||||
rpn_reg_loss = cb_params.net_outputs[2].asnumpy()
|
||||
rpn_loss = cb_params.net_outputs.asnumpy()
|
||||
|
||||
self.count += 1
|
||||
self.rpn_loss_sum += float(rpn_loss)
|
||||
self.rpn_cls_loss_sum += float(rpn_cls_loss)
|
||||
self.rpn_reg_loss_sum += float(rpn_reg_loss)
|
||||
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
|
||||
|
||||
|
@ -72,12 +66,10 @@ class LossCallBack(Callback):
|
|||
global time_stamp_first
|
||||
time_stamp_current = time.time()
|
||||
rpn_loss = self.rpn_loss_sum / self.count
|
||||
rpn_cls_loss = self.rpn_cls_loss_sum / self.count
|
||||
rpn_reg_loss = self.rpn_reg_loss_sum / self.count
|
||||
loss_file = open("./loss_{}.log".format(self.rank_id), "a+")
|
||||
loss_file.write("%lu epoch: %s step: %s ,rpn_loss: %.5f, rpn_cls_loss: %.5f, rpn_reg_loss: %.5f"%
|
||||
loss_file.write("%lu epoch: %s step: %s rpn_loss: %.5f"%
|
||||
(time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch,
|
||||
rpn_loss, rpn_cls_loss, rpn_reg_loss))
|
||||
rpn_loss))
|
||||
loss_file.write("\n")
|
||||
loss_file.close()
|
||||
|
||||
|
@ -123,18 +115,16 @@ class TrainOneStepCell(nn.Cell):
|
|||
|
||||
Args:
|
||||
network (Cell): The training network.
|
||||
network_backbone (Cell): The forward network.
|
||||
optimizer (Cell): Optimizer for updating the weights.
|
||||
sens (Number): The adjust parameter. Default value is 1.0.
|
||||
reduce_flag (bool): The reduce flag. Default value is False.
|
||||
mean (bool): Allreduce method. Default value is False.
|
||||
degree (int): Device number. Default value is None.
|
||||
"""
|
||||
def __init__(self, network, network_backbone, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None):
|
||||
def __init__(self, network, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None):
|
||||
super(TrainOneStepCell, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
self.network.set_grad()
|
||||
self.backbone = network_backbone
|
||||
self.weights = ParameterTuple(network.trainable_params())
|
||||
self.optimizer = optimizer
|
||||
self.grad = C.GradOperation(get_by_list=True,
|
||||
|
@ -146,8 +136,8 @@ class TrainOneStepCell(nn.Cell):
|
|||
|
||||
def construct(self, x, gt_bbox, gt_label, gt_num, img_shape=None):
|
||||
weights = self.weights
|
||||
rpn_loss, _, _, rpn_cls_loss, rpn_reg_loss = self.backbone(x, gt_bbox, gt_label, gt_num, img_shape)
|
||||
loss = self.network(x, gt_bbox, gt_label, gt_num, img_shape)
|
||||
grads = self.grad(self.network, weights)(x, gt_bbox, gt_label, gt_num, img_shape, self.sens)
|
||||
if self.reduce_flag:
|
||||
grads = self.grad_reducer(grads)
|
||||
return F.depend(rpn_loss, self.optimizer(grads)), rpn_cls_loss, rpn_reg_loss
|
||||
return F.depend(loss, self.optimizer(grads))
|
||||
|
|
|
@ -100,10 +100,10 @@ if __name__ == '__main__':
|
|||
weight_decay=config.weight_decay, loss_scale=config.loss_scale)
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
if args_opt.run_distribute:
|
||||
net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True,
|
||||
net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True,
|
||||
mean=True, degree=device_num)
|
||||
else:
|
||||
net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale)
|
||||
net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale)
|
||||
|
||||
time_cb = TimeMonitor(data_size=dataset_size)
|
||||
loss_cb = LossCallBack(rank_id=rank)
|
||||
|
|
|
@ -69,7 +69,7 @@ class LossCallBack(Callback):
|
|||
total_loss = self.loss_sum / self.count
|
||||
|
||||
loss_file = open("./loss_{}.log".format(self.rank_id), "a+")
|
||||
loss_file.write("%lu epoch: %s step: %s ,total_loss: %.5f" %
|
||||
loss_file.write("%lu epoch: %s step: %s total_loss: %.5f" %
|
||||
(time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch,
|
||||
total_loss))
|
||||
loss_file.write("\n")
|
||||
|
|
|
@ -69,7 +69,7 @@ class LossCallBack(Callback):
|
|||
total_loss = self.loss_sum / self.count
|
||||
|
||||
loss_file = open("./loss_{}.log".format(self.rank_id), "a+")
|
||||
loss_file.write("%lu epoch: %s step: %s ,total_loss: %.5f" %
|
||||
loss_file.write("%lu epoch: %s step: %s total_loss: %.5f" %
|
||||
(time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch,
|
||||
total_loss))
|
||||
loss_file.write("\n")
|
||||
|
|
|
@ -68,7 +68,7 @@ class LossCallBack(Callback):
|
|||
total_loss = self.loss_sum / self.count
|
||||
|
||||
loss_file = open("./loss_{}.log".format(self.rank_id), "a+")
|
||||
loss_file.write("%lu epoch: %s step: %s ,total_loss: %.5f" %
|
||||
loss_file.write("%lu epoch: %s step: %s total_loss: %.5f" %
|
||||
(time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch,
|
||||
total_loss))
|
||||
loss_file.write("\n")
|
||||
|
|
|
@ -97,7 +97,7 @@ class LossCallBack(Callback):
|
|||
total_loss = self.loss_sum/self.count
|
||||
|
||||
loss_file = open("./loss_{}.log".format(self.rank_id), "a+")
|
||||
loss_file.write("%lu epoch: %s step: %s ,total_loss: %.5f" %
|
||||
loss_file.write("%lu epoch: %s step: %s total_loss: %.5f" %
|
||||
(time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch,
|
||||
total_loss))
|
||||
loss_file.write("\n")
|
||||
|
|
Loading…
Reference in New Issue