!12277 add conv and conv3x3 coder

From: @zhujingxuan
Reviewed-by: @wangchengyuan,@HilbertDavid
Signed-off-by: @wangchengyuan
This commit is contained in:
mindspore-ci-bot 2021-02-18 09:04:29 +08:00 committed by Gitee
commit f2650ecfc5
10 changed files with 730 additions and 1 deletions

View File

@ -78,6 +78,8 @@ set(CODER_OPCODERS_SRC
${MICRO_DIR}/coder/opcoders/nnacl/int8/concat_int8_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/int8/fullconnection_int8_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/int8/matmul_int8_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/int8/conv2d_3x3_int8_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/int8/conv2d_int8_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/int8/pooling_int8_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/int8/reduce_int8_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/int8/reshape_int8_coder.cc
@ -120,10 +122,12 @@ set(LITE_KERNEL_SRC
${LITE_DIR}/nnacl/int8/matmul_int8.c
${LITE_DIR}/nnacl/int8/fixed_point.c
${LITE_DIR}/nnacl/fp32/matmul_fp32.c
${LITE_DIR}/nnacl/int8/conv3x3_int8.c
)
set(MICRO_ADAPTER_SRC
${MICRO_DIR}/wrapper/fp32/matmul_fp32_wrapper.c
${MICRO_DIR}/wrapper/int8/matmul_int8_wrapper.c
${MICRO_DIR}/wrapper/int8/conv_init_int8.c
)
list(APPEND FILE_SET ${CODER_SRC} ${CODER_UTILS_SRC} ${CODER_OPCODERS_SRC} ${CODER_GENERATOR_SRC}

View File

@ -0,0 +1,161 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "micro/coder/opcoders/nnacl/int8/conv2d_3x3_int8_coder.h"
#include <string>
#include <vector>
#include "securec/include/securec.h"
#include "nnacl/int8/conv3x3_int8.h"
#include "src/runtime/kernel/arm/base/convolution_base.h"
#include "src/runtime/kernel/arm/int8/convolution_3x3_int8.h"
#include "micro/coder/opcoders/file_collector.h"
#include "micro/coder/log.h"
#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h"
namespace mindspore::lite::micro::nnacl {
void ProcessFilterUint8(int8_t *origin_weight, int16_t *dst_weight, ConvParameter *conv_param) {
int input_channel = conv_param->input_channel_;
int output_channel = conv_param->output_channel_;
int kernel_plane = conv_param->kernel_w_ * conv_param->kernel_h_;
int iC8 = UP_DIV(input_channel, C8NUM);
size_t tmp_size = output_channel * iC8 * C8NUM * kernel_plane * sizeof(int16_t);
auto tmp_addr = reinterpret_cast<int16_t *>(malloc(tmp_size));
MS_CHECK_PTR_IF_NULL(tmp_addr);
int ret = memset_s(tmp_addr, tmp_size, 0, tmp_size);
if (ret != EOK) {
free(tmp_addr);
MS_LOG(ERROR) << "memset_s tmp_addr failed.";
return;
}
PackWeightToC8Int8(origin_weight, tmp_addr, conv_param);
Conv3x3Int8FilterTransform(tmp_addr, dst_weight, iC8, output_channel, kernel_plane);
free(tmp_addr);
}
int Conv2D3x3Int8Coder::InitWeightBias() {
int input_channel = conv_param_->input_channel_;
int output_channel = conv_param_->output_channel_;
MS_CHECK_TRUE(input_channel > 0, "invalid input_channel");
MS_CHECK_TRUE(output_channel > 0, "invalid output_channel");
int iC8 = UP_DIV(input_channel, C8NUM);
int oC4 = UP_DIV(output_channel, C4NUM);
// init weight
int transformed_size = iC8 * C8NUM * oC4 * C4NUM * 16 * sizeof(int16_t);
transformed_filter_addr_ =
static_cast<int16_t *>(allocator_->Malloc(kNumberTypeInt16, transformed_size, kOfflinePackWeight));
MS_CHECK_PTR(transformed_filter_addr_);
MS_CHECK_RET_CODE(memset_s(transformed_filter_addr_, transformed_size, 0, transformed_size),
"memset_s transformed_filter_addr_ failed.");
auto *original_weight_addr = reinterpret_cast<int8_t *>(filter_tensor_->data_c());
ProcessFilterUint8(original_weight_addr, transformed_filter_addr_, conv_param_);
// init bias
int new_bias_size = oC4 * C4NUM * sizeof(int32_t);
new_bias_addr_ = static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, new_bias_size, kOfflinePackWeight));
MS_CHECK_PTR(new_bias_addr_);
MS_CHECK_RET_CODE(memset_s(new_bias_addr_, new_bias_size, 0, new_bias_size), "memset_s new_bias_addr_ failed.");
if (input_tensors_.size() == kInputSize2) {
auto *ori_bias_addr = reinterpret_cast<int32_t *>(bias_tensor_->data_c());
MS_CHECK_RET_CODE(
memcpy_s(new_bias_addr_, output_channel * sizeof(int32_t), ori_bias_addr, output_channel * sizeof(int32_t)),
"memset_s new_bias_addr_ failed.");
} else {
MS_ASSERT(input_tensors_.size() == kInputSize1);
}
return RET_OK;
}
int Conv2D3x3Int8Coder::InitTmpBuffer(CoderContext *const context) {
int ic8 = UP_DIV(conv_param_->input_channel_, C8NUM);
int oc4 = UP_DIV(conv_param_->output_channel_, C4NUM);
int in_batch = conv_param_->input_batch_;
int input_w = conv_param_->input_w_;
int input_h = conv_param_->input_h_;
int output_batch = conv_param_->output_batch_;
int output_w = conv_param_->output_w_;
int output_h = conv_param_->output_h_;
/*=============================tile_buffer_============================*/
tile_buffer_size_ = thread_num_ * TILE_NUM * 16 * ic8 * C8NUM * sizeof(int16_t);
tile_buffer_ = static_cast<int16_t *>(allocator_->Malloc(kNumberTypeInt16, tile_buffer_size_, kWorkspace));
/*=============================block_unit_buffer_============================*/
block_unit_buffer_size_ = thread_num_ * 4 * 4 * C8NUM * sizeof(int16_t);
block_unit_buffer_ =
static_cast<int16_t *>(allocator_->Malloc(kNumberTypeInt16, block_unit_buffer_size_, kWorkspace));
/*=============================tmp_dst_buffer_============================*/
tmp_dst_buffer_size_ = thread_num_ * TILE_NUM * 16 * oc4 * C4NUM * sizeof(int32_t);
tmp_dst_buffer_ = static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, tmp_dst_buffer_size_, kWorkspace));
/*=============================tmp_out_============================*/
tmp_out_size_ = oc4 * C4NUM * output_batch * output_w * output_h * sizeof(uint8_t);
tmp_out_ = static_cast<uint8_t *>(allocator_->Malloc(kNumberTypeUInt8, tmp_out_size_, kWorkspace));
/*=============================input_data_============================*/
c8_input_size_ = in_batch * input_h * input_w * ic8 * C8NUM * sizeof(int16_t);
c8_input_ = static_cast<int16_t *>(allocator_->Malloc(kNumberTypeInt16, c8_input_size_, kWorkspace));
return RET_OK;
}
void Conv2D3x3Int8Coder::ConfigInputOutput() { output_tensor_->set_format(schema::Format_NHWC); }
int Conv2D3x3Int8Coder::Prepare(CoderContext *const context) {
conv_param_->thread_num_ = thread_num_;
// to 1, task id is set to 0
conv_param_->op_parameter_.thread_num_ = thread_num_;
MS_CHECK_RET_CODE(Conv2DBaseCoder::Init(), "ConvolutionBase init failed.");
MS_CHECK_RET_CODE(SetQuantParam(), "Set quant param failed.");
MS_CHECK_RET_CODE(InitWeightBias(), "Init weight bias failed.");
// init tmp input, output
MS_CHECK_RET_CODE(InitTmpBuffer(context), "Init tmp buffer failed.");
// config input output
ConfigInputOutput();
return RET_OK;
}
int Conv2D3x3Int8Coder::DoCode(CoderContext *const context) {
Collect(context, {"nnacl/int8/conv_int8.h"}, {"pack.c", "conv_int8.c", "fixed_point.c"});
nnacl::NNaclInt8Serializer code;
code.precision(kPrecision);
// call the op function
code.CodeFunction("memset", tile_buffer_, 0, tile_buffer_size_);
code.CodeFunction("memset", block_unit_buffer_, 0, block_unit_buffer_size_);
code.CodeFunction("memset", tmp_dst_buffer_, 0, tmp_dst_buffer_size_);
code.CodeFunction("memset", tmp_out_, 0, tmp_out_size_);
code.CodeFunction("memset", c8_input_, 0, c8_input_size_);
// define conv params
code.CodeStruct("conv_param_", *conv_param_);
// pack to c8
code.CodeFunction("PackInputToC8Int8", input_tensor_, c8_input_, "&conv_param_");
// code operator func
if (thread_num_ > 1) {
code.CodeBaseStruct("Conv3x3Int8Args", "args", c8_input_, transformed_filter_addr_, new_bias_addr_, output_tensor_,
tile_buffer_, block_unit_buffer_, tmp_dst_buffer_, tmp_out_, "&conv_param_");
code.CodeFunction("ParallelLaunch", "THREAD_POOL_DEFAULT", "Conv3x3Int8Run", "&args", "thread_num");
} else {
int task_id = 0;
code.CodeFunction("Conv3x3Int8", c8_input_, transformed_filter_addr_, new_bias_addr_, output_tensor_, tile_buffer_,
block_unit_buffer_, tmp_dst_buffer_, tmp_out_, task_id, "&conv_param_");
}
code.CodeFunction("PackNC4HW4ToNHWCInt8", tmp_out_, output_tensor_, conv_param_->output_batch_,
conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_);
context->AppendCode(code.str());
return RET_OK;
}
} // namespace mindspore::lite::micro::nnacl

View File

@ -0,0 +1,61 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_Conv2D_3X3_INT8_CODER_H_
#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_Conv2D_3X3_INT8_CODER_H_
#include "micro/coder/opcoders/base/conv2d_base_coder.h"
#include <memory>
#include <string>
#include <vector>
#include "nnacl/conv_parameter.h"
namespace mindspore::lite::micro::nnacl {
class Conv2D3x3Int8Coder final : public Conv2DBaseCoder {
public:
Conv2D3x3Int8Coder(const std::vector<Tensor *> &in_tensors, const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index, Target target)
: Conv2DBaseCoder(in_tensors, out_tensors, node, node_index, target) {}
int Prepare(CoderContext *const context) override;
int DoCode(CoderContext *const context) override;
~Conv2D3x3Int8Coder() override = default;
private:
int InitWeightBias();
void ConfigInputOutput();
int InitTmpBuffer(CoderContext *ctx);
int16_t *transformed_filter_addr_{nullptr};
int32_t *new_bias_addr_{nullptr};
int16_t *block_unit_buffer_{nullptr};
int16_t *tile_buffer_{nullptr};
int32_t *tmp_dst_buffer_{nullptr};
uint8_t *tmp_out_{nullptr};
int16_t *c8_input_{nullptr};
size_t tile_buffer_size_{0};
size_t block_unit_buffer_size_{0};
size_t tmp_dst_buffer_size_{0};
size_t tmp_out_size_{0};
size_t c8_input_size_{0};
};
} // namespace mindspore::lite::micro::nnacl
#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_Conv2D_3X3_INT8_CODER_H_

View File

@ -0,0 +1,265 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "micro/coder/opcoders/nnacl/int8/conv2d_int8_coder.h"
#include <memory>
#include <string>
#include <vector>
#include <utility>
#include "securec/include/securec.h"
#include "micro/coder/opcoders/nnacl/int8/conv2d_3x3_int8_coder.h"
#include "micro/coder/log.h"
#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h"
#include "src/runtime/kernel/arm/base/convolution_base.h"
#include "src/runtime/kernel/arm/int8/convolution_int8.h"
#include "src/ops/populate/populate_register.h"
#include "micro/coder/opcoders/file_collector.h"
using mindspore::schema::PrimitiveType_Conv2D;
namespace mindspore::lite::micro::nnacl {
int Conv2DINT8Coder::InitTmpBuffer(CoderContext *const context) {
int kernel_plane = conv_param_->kernel_h_ * conv_param_->kernel_w_;
int tmp_size;
if (target_ == kARM64) {
tmp_size = MSMAX(UP_ROUND(kernel_plane * conv_param_->input_channel_, C4NUM),
UP_ROUND(kernel_plane * conv_param_->input_channel_, C16NUM));
} else {
if (support_optimize_) {
tmp_size = UP_ROUND(kernel_plane * conv_param_->input_channel_, C4NUM);
} else {
tmp_size = UP_ROUND(kernel_plane * conv_param_->input_channel_, C16NUM);
}
}
// malloc packed input
packed_input_size_ = tmp_size * thread_num_ * tile_num_ * sizeof(int8_t);
packed_input_ = static_cast<int8_t *>(allocator_->Malloc(kNumberTypeInt8, packed_input_size_, kWorkspace));
MS_CHECK_PTR(packed_input_);
matmul_packed_input_size_ = thread_num_ * tile_num_ * kernel_plane * conv_param_->input_channel_ * sizeof(int8_t);
matmul_packed_input_ =
static_cast<int8_t *>(allocator_->Malloc(kNumberTypeInt8, matmul_packed_input_size_, kWorkspace));
MS_CHECK_PTR(matmul_packed_input_);
return RET_OK;
}
void Conv2DINT8Coder::CheckSupportOptimize() {
tile_num_ = 8;
matmul_func_ = "NULL";
switch (target_) {
case kARM32A:
support_optimize_ = false;
tile_num_ = 4;
matmul_func_ = "NULL";
break;
case kARM64:
// check support_optimize at runtime
matmul_func_ = "MatMulRInt8_optimize_handler";
tile_num_ = 8;
break;
case kX86:
support_optimize_ = true;
tile_num_ = 8;
break;
default:
MS_LOG(ERROR) << "target not supported";
return;
}
conv_param_->tile_num_ = tile_num_;
}
int Conv2DINT8Coder::InitWeightBias(CoderContext *const context) {
int32_t input_channel = filter_tensor_->Channel();
int32_t output_channel = filter_tensor_->Batch();
int32_t kernel_h = filter_tensor_->Height();
int32_t kernel_w = filter_tensor_->Width();
conv_param_->input_channel_ = input_channel;
conv_param_->output_channel_ = output_channel;
auto output_channel_size = static_cast<size_t>(output_channel);
auto output_channel_data_size = static_cast<size_t>(output_channel_size * sizeof(int32_t));
int32_t input_zp = conv_param_->conv_quant_arg_.input_quant_args_[0].zp_;
filter_peroc_ = conv_quant_arg_->per_channel_ & FILTER_PER_CHANNEL;
if (filter_peroc_) {
filter_zp_ptr_ =
static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, output_channel_data_size, kOfflinePackWeight));
MS_CHECK_PTR(filter_zp_ptr_);
MS_CHECK_RET_CODE(memset_s(filter_zp_ptr_, output_channel_data_size, 0, output_channel_data_size),
"memset_s filter_zp_ptr_addr failed.");
for (int oc = 0; oc < output_channel; oc++) {
filter_zp_ptr_[oc] = conv_param_->conv_quant_arg_.filter_quant_args_[oc].zp_;
}
}
int up_round_oc;
switch (target_) {
case kARM32A:
up_round_oc = UP_ROUND(output_channel, C2NUM);
break;
case kARM64:
up_round_oc = MSMAX(UP_ROUND(output_channel, C8NUM), UP_ROUND(output_channel, C4NUM));
break;
case kX86:
up_round_oc = UP_ROUND(output_channel, C8NUM);
break;
default:
MS_LOG(ERROR) << "target not supported";
return RET_ERROR;
}
if (filter_peroc_) {
input_sum_size_ = up_round_oc * tile_num_ * thread_num_ * sizeof(int32_t);
} else {
input_sum_size_ = tile_num_ * thread_num_ * sizeof(int32_t);
}
input_sum_ =
static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, static_cast<size_t>(input_sum_size_), kWorkspace));
MS_CHECK_PTR(input_sum_);
packed_weight_ = static_cast<int8_t *>(allocator_->Malloc(kNumberTypeInt8, kOnlineSize, kOnlinePackWeight));
MS_CHECK_PTR(packed_weight_);
bias_data_ = static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, kOnlineSize, kOnlinePackWeight));
MS_CHECK_PTR(bias_data_);
std::string filter_zp_str = "";
std::string packed_weight_str = "(int8_t **)&" + allocator_->GetRuntimeAddr(packed_weight_);
std::string bias_data_str = "(int32_t **)&" + allocator_->GetRuntimeAddr(bias_data_);
nnacl::NNaclInt8Serializer code;
if (filter_peroc_) {
filter_zp_str = allocator_->GetRuntimeAddr(filter_zp_ptr_);
} else {
filter_zp_str = "filter_zp";
code << "int32_t filter_zp[1] = {" << conv_param_->conv_quant_arg_.filter_quant_args_[0].zp_ << "};\n";
}
if (target_ == kARM64) {
code.CodeFunctionWithCheck("ConvInit", filter_tensor_, bias_tensor_, filter_zp_str, kernel_h, kernel_w,
input_channel, output_channel, input_zp, filter_peroc_, "GetSupportOptFlag()",
packed_weight_str, bias_data_str);
} else {
code.CodeFunctionWithCheck("ConvInit", filter_tensor_, bias_tensor_, filter_zp_str, kernel_h, kernel_w,
input_channel, output_channel, input_zp, filter_peroc_, support_optimize_,
packed_weight_str, bias_data_str);
}
context->AppendInitCode(code.str());
return RET_OK;
}
int Conv2DINT8Coder::Prepare(CoderContext *const context) {
Conv2DBaseCoder::Init();
CheckSupportOptimize();
MS_CHECK_RET_CODE(SetQuantParam(), "Set quant param failed!");
MS_CHECK_RET_CODE(InitWeightBias(context), "Init weight bias failed.");
MS_CHECK_RET_CODE(Resize(), "Resize failed.");
MS_CHECK_RET_CODE(InitTmpBuffer(context), "InitTmpBuffer failed.");
return RET_OK;
}
int Conv2DINT8Coder::Resize() {
MS_CHECK_RET_CODE(Conv2DBaseCoder::CheckResizeValid(), "Resize is invalid.");
MS_CHECK_RET_CODE(Conv2DBaseCoder::Init(), "Conv2DBaseCoder init failed.");
return RET_OK;
}
int Conv2DINT8Coder::DoCode(CoderContext *const context) {
Collect(context, {"nnacl/int8/conv_int8.h", "nnacl/common_func.h", "nnacl/kernel/int8/conv_init_int8.h"},
{"common_func.c", "pack.c", "conv_int8.c", "winograd_transform.c", "matmul_int8.c", "fixed_point.c",
"conv_init_int8.c"});
// call the op function
nnacl::NNaclInt8Serializer code;
code.precision(kPrecision);
code.CodeFunction("memset", packed_input_, 0, packed_input_size_);
code.CodeFunction("memset", input_sum_, 0, input_sum_size_);
code.CodeFunction("memset", matmul_packed_input_, 0, matmul_packed_input_size_);
conv_param_->op_parameter_.thread_num_ = thread_num_;
conv_param_->thread_num_ = thread_num_;
code.CodeStruct("conv_param_", *conv_param_);
// code operator func
if (thread_num_ > 1) {
code.CodeFunction("memset", matmul_packed_input_, 0, matmul_packed_input_size_);
code.CodeBaseStruct("ConvOptInt8Args", "args", input_tensor_, packed_input_, matmul_packed_input_, packed_weight_,
bias_data_, output_tensor_, input_sum_, thread_num_s_, "(ConvParameter *)&conv_param_",
matmul_func_);
code.CodeFunction("ParallelLaunch", "THREAD_POOL_DEFAULT", "ConvInt8Run", "&args", "thread_num");
} else {
if (target_ == kARM64) {
code << "if (GetSupportOptFlag()) {\n";
code << "conv_param_.tile_num_ = " << 8 << ";\n";
code << "} else {\n";
code << "conv_param_.tile_num_ = " << 4 << ";\n";
code << "}\n";
code.CodeFunction("ConvInt8", input_tensor_, packed_input_, matmul_packed_input_, packed_weight_, bias_data_,
output_tensor_, filter_zp_ptr_, input_sum_, 0, "(ConvParameter *)&conv_param_", matmul_func_,
"GetSupportOptFlag()");
} else {
code.CodeFunction("ConvInt8", input_tensor_, packed_input_, matmul_packed_input_, packed_weight_, bias_data_,
output_tensor_, filter_zp_ptr_, input_sum_, 0, "(ConvParameter *)&conv_param_", matmul_func_,
support_optimize_);
}
}
context->AppendCode(code.str());
return RET_OK;
}
std::unique_ptr<OperatorCoder> CPUConv2DINT8CoderCreator(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index, Target target) {
PrimitiveC *primitive_c = node->primitive_;
if (!primitive_c) {
return nullptr;
}
OpParameter *parameter =
PopulateRegistry::GetInstance()->GetParameterCreator((schema::PrimitiveType(primitive_c->Type())))(primitive_c);
if (parameter == nullptr) {
MS_LOG(ERROR) << "PopulateParameter return nullptr, type: "
<< schema::EnumNamePrimitiveType((schema::PrimitiveType)(primitive_c->Type()));
return nullptr;
}
auto *conv_param = reinterpret_cast<ConvParameter *>(parameter);
int kernel_h = conv_param->kernel_h_;
int kernel_w = conv_param->kernel_w_;
int stride_h = conv_param->stride_h_;
int stride_w = conv_param->stride_w_;
int dilation_h = conv_param->dilation_h_;
int dilation_w = conv_param->dilation_w_;
free(parameter);
std::unique_ptr<OperatorCoder> coder;
if (kernel_h == 3 && kernel_w == 3 && stride_h == 1 && stride_w == 1 && dilation_h == 1 && dilation_w == 1) {
coder = CPUOpCoderCreator<Conv2D3x3Int8Coder>(in_tensors, out_tensors, node, node_index, target);
} else if (kernel_h == 1 && kernel_w == 1) {
coder = CPUOpCoderCreator<Conv2DINT8Coder>(in_tensors, out_tensors, node, node_index, target);
} else {
coder = CPUOpCoderCreator<Conv2DINT8Coder>(in_tensors, out_tensors, node, node_index, target);
}
if (coder == nullptr) {
MS_LOG(ERROR) << "create conv2d int8 coder failed";
return nullptr;
}
return coder;
}
REG_OPERATOR_CODER(kX86, kNumberTypeInt8, PrimitiveType_Conv2D, CPUConv2DINT8CoderCreator)
REG_OPERATOR_CODER(kARM32A, kNumberTypeInt8, PrimitiveType_Conv2D, CPUConv2DINT8CoderCreator)
REG_OPERATOR_CODER(kARM64, kNumberTypeInt8, PrimitiveType_Conv2D, CPUConv2DINT8CoderCreator)
} // namespace mindspore::lite::micro::nnacl

View File

@ -0,0 +1,71 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_INT8_CODER_H_
#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_INT8_CODER_H_
#include <string>
#include <memory>
#include <vector>
#include "micro/coder/opcoders/base/conv2d_base_coder.h"
#include "nnacl/conv_parameter.h"
#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h"
namespace mindspore::lite::micro::nnacl {
class Conv2DINT8Coder final : public Conv2DBaseCoder {
public:
explicit Conv2DINT8Coder(const std::vector<Tensor *> &in_tensors, const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index, Target target)
: Conv2DBaseCoder(in_tensors, out_tensors, node, node_index, target) {}
int Prepare(CoderContext *const context) override;
int DoCode(CoderContext *const context) override;
~Conv2DINT8Coder() override = default;
private:
int InitWeightBias(CoderContext *ctx);
void CheckSupportOptimize();
int InitTmpBuffer(CoderContext *ctx);
int Resize();
int8_t *packed_weight_{nullptr};
int32_t *bias_data_{nullptr};
int32_t *filter_zp_ptr_{nullptr};
int thread_count_{1};
int tile_num_{0};
bool support_optimize_{true};
bool filter_peroc_{false};
size_t packed_input_size_{0};
size_t input_sum_size_{0};
size_t matmul_packed_input_size_{0};
int8_t *packed_input_{nullptr};
int32_t *input_sum_{nullptr};
int8_t *matmul_packed_input_{nullptr};
string matmul_func_;
std::function<int(nnacl::NNaclInt8Serializer &, const std::string &, const std::string &)> pack_weight_init_{nullptr};
};
} // namespace mindspore::lite::micro::nnacl
#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_INT8_CODER_H_

View File

@ -19,6 +19,47 @@
#include "micro/coder/log.h"
namespace mindspore::lite::micro::nnacl {
void NNaclInt8Serializer::CodeStruct(const std::string &name, const ConvParameter &conv_parameter) {
const ConvQuantArg &quant_arg = conv_parameter.conv_quant_arg_;
std::string quant_arg_in = name + "_quant_arg_in";
std::string quant_arg_w = name + "_quant_arg_w";
std::string quant_arg_out = name + "_quant_arg_out";
CodeArray(quant_arg_in, quant_arg.input_quant_args_, quant_arg.input_arg_num_, false);
CodeArray(quant_arg_w, quant_arg.filter_quant_args_, quant_arg.filter_arg_num_, false);
CodeArray(quant_arg_out, quant_arg.output_quant_args_, quant_arg.output_arg_num_, false);
std::string real_multiplier = name + "_real_multiplier";
std::string left_shift = name + "_left_shift";
std::string right_shift = name + "_right_shift";
std::string quant_multiplier = name + "_quant_multiplier";
CodeArray(real_multiplier, quant_arg.real_multiplier_, quant_arg.filter_arg_num_, false);
CodeArray(left_shift, quant_arg.left_shift_, quant_arg.filter_arg_num_, false);
CodeArray(right_shift, quant_arg.right_shift_, quant_arg.filter_arg_num_, false);
CodeArray(quant_multiplier, quant_arg.quant_multiplier_, quant_arg.filter_arg_num_, false);
std::string out_act_min = name + "_out_act_min";
std::string out_act_max = name + "_out_act_max";
CodeArray(out_act_min, quant_arg.out_act_min_, 1, false);
CodeArray(out_act_max, quant_arg.out_act_max_, 1, false);
std::string conv_quant_arg = name + "_conv_quant_arg";
CodeBaseStruct("ConvQuantArg", conv_quant_arg, quant_arg.round_mode_, quant_arg.quant_multiplier_mode_, quant_arg_in,
quant_arg_w, quant_arg_out, real_multiplier, left_shift, right_shift, quant_multiplier, out_act_min,
out_act_max, quant_arg.input_arg_num_, quant_arg.filter_arg_num_, quant_arg.output_arg_num_,
quant_arg.per_channel_);
CodeBaseStruct(
"ConvParameter", name, conv_parameter.op_parameter_, conv_quant_arg, conv_parameter.kernel_h_,
conv_parameter.kernel_w_, conv_parameter.stride_h_, conv_parameter.stride_w_, conv_parameter.dilation_h_,
conv_parameter.dilation_w_, conv_parameter.pad_u_, conv_parameter.pad_d_, conv_parameter.pad_l_,
conv_parameter.pad_r_, conv_parameter.group_, conv_parameter.tile_num_, conv_parameter.input_batch_,
conv_parameter.input_h_, conv_parameter.input_w_, conv_parameter.input_channel_, conv_parameter.output_batch_,
conv_parameter.output_h_, conv_parameter.output_w_, conv_parameter.output_channel_, conv_parameter.thread_num_,
conv_parameter.input_unit_, conv_parameter.output_unit_, conv_parameter.pad_mode_, conv_parameter.act_type_);
}
void NNaclInt8Serializer::CodeStruct(const std::string &name, const ArithmeticParameter &arithmetic_parameter) {
CodeBaseStruct("ArithmeticParameter", name, arithmetic_parameter.op_parameter_, arithmetic_parameter.broadcasting_,
arithmetic_parameter.ndim_, arithmetic_parameter.activation_type_,

View File

@ -33,7 +33,7 @@ namespace mindspore::lite::micro::nnacl {
class NNaclInt8Serializer : public Serializer {
public:
NNaclInt8Serializer() = default;
~NNaclInt8Serializer() = default;
~NNaclInt8Serializer() override = default;
void CodeStruct(const std::string &name, const ConvParameter &conv_parameter);
void CodeStruct(const std::string &name, const MatMulParameter &matmul_parameter);
void CodeStruct(const std::string &name, const AddQuantParameter &add_quant_parameter);

View File

@ -47,6 +47,18 @@ inline std::ostream &operator<<(std::ostream &code, RoundMode round_mode) {
return code;
}
inline std::ostream &operator<<(std::ostream &code, RoundingMode rounding_mode) {
code << "(RoundingMode)"
<< "(" << static_cast<int>(rounding_mode) << ")";
return code;
}
inline std::ostream &operator<<(std::ostream &code, PadMode pad_mode) {
code << "(PadMode)"
<< "(" << static_cast<int>(pad_mode) << ")";
return code;
}
inline std::ostream &operator<<(std::ostream &code, ActType act_type) {
code << "(ActType)"
<< "(" << static_cast<int>(act_type) << ")";

View File

@ -0,0 +1,88 @@
/*
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wrapper/int8/conv_init_int8.h"
#include <memory.h>
#include "nnacl/op_base.h"
#include "nnacl/int8/matmul_int8.h"
#include "nnacl/errorcode.h"
int ConvInit(int8_t *origin_weight, const int32_t *ori_bias, const int32_t *filter_quant_zps, int kernel_h,
int kernel_w, int input_channel, int output_channel, int32_t input_zp, bool filter_peroc,
bool support_optimize, int8_t **packed_weight, int32_t **bias_data) {
int8_t *packed_weight_ = NULL;
int32_t *bias_data_ = NULL;
int kernel_plane = kernel_h * kernel_w;
int up_round_deep;
int up_round_oc;
#ifdef ENABLE_ARM32
up_round_oc = UP_ROUND(output_channel, C2NUM);
up_round_deep = UP_ROUND(kernel_plane * input_channel, C16NUM);
#else
if (support_optimize) {
up_round_oc = UP_ROUND(output_channel, C8NUM);
up_round_deep = UP_ROUND(kernel_plane * input_channel, C4NUM);
} else {
up_round_oc = UP_ROUND(output_channel, C4NUM);
up_round_deep = UP_ROUND(kernel_plane * input_channel, C16NUM);
}
#endif
int pack_weight_size = up_round_oc * up_round_deep;
size_t bias_size = up_round_oc * sizeof(int32_t);
// init weight
packed_weight_ = (int8_t *)(malloc(pack_weight_size));
if (packed_weight_ == NULL) {
return NNACL_ERR;
}
memset(packed_weight_, 0, pack_weight_size);
#ifdef ENABLE_ARM32
RowMajor2Row2x16MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_plane);
#else
if (support_optimize) {
RowMajor2Row8x4MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_plane);
} else {
RowMajor2Row16x4MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_plane);
}
#endif
// init bias
bias_data_ = (int32_t *)(malloc(bias_size));
if (bias_data_ == NULL) {
free(packed_weight_);
return NNACL_ERR;
}
memset(bias_data_, 0, bias_size);
if (ori_bias != NULL) {
memcpy(bias_data_, ori_bias, output_channel * sizeof(int32_t));
}
for (int oc = 0; oc < output_channel; oc++) {
int32_t filter_zp = filter_quant_zps[0];
if (filter_peroc) {
filter_zp = filter_quant_zps[oc];
}
int32_t weight_sum_value = up_round_deep * filter_zp;
for (int i = 0; i < kernel_plane * input_channel; i++) {
weight_sum_value += origin_weight[oc * kernel_plane * input_channel + i] - filter_zp;
}
bias_data_[oc] += filter_zp * input_zp * up_round_deep - weight_sum_value * input_zp;
}
*packed_weight = packed_weight_;
*bias_data = bias_data_;
return NNACL_OK;
}

View File

@ -0,0 +1,26 @@
/*
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_MICRO_INT8_CONV_INIT_H_
#define MINDSPORE_LITE_MICRO_INT8_CONV_INIT_H_
#include <stdint.h>
#include <stdbool.h>
int ConvInit(int8_t *origin_weight, const int32_t *ori_bias, const int32_t *filter_quant_zps, int kernel_h,
int kernel_w, int input_channel, int output_channel, int32_t input_zp, bool filter_peroc,
bool support_optimize, int8_t **packed_weight, int32_t **bias_data);
#endif // MINDSPORE_LITE_MICRO_INT8_CONV_INIT_H_