forked from mindspore-Ecosystem/mindspore
!24429 optimize the OMP thread compute and actor run error info
Merge pull request !24429 from limingqi107/new_actor_runtime
This commit is contained in:
commit
f06311c5fa
|
@ -20,12 +20,12 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
void ComputeThreadNums(size_t *actor_thread_num, size_t *OMP_thread_num, size_t *max_thread_num) {
|
||||
void ComputeThreadNums(size_t *actor_thread_num, size_t *actor_and_kernel_thread_num) {
|
||||
MS_EXCEPTION_IF_NULL(actor_thread_num);
|
||||
MS_EXCEPTION_IF_NULL(OMP_thread_num);
|
||||
MS_EXCEPTION_IF_NULL(max_thread_num);
|
||||
MS_EXCEPTION_IF_NULL(actor_and_kernel_thread_num);
|
||||
size_t cpu_core_num = std::thread::hardware_concurrency() - 1;
|
||||
const size_t kMaxThreadNum = 23;
|
||||
|
||||
// Compute the actor thread num.
|
||||
const size_t kActorThreadMaxNum = 5;
|
||||
// The MemoryManagerActor binds single thread, and the other actors share one thread at least, so the min num is 2.
|
||||
const size_t kActorThreadMinNum = 2;
|
||||
|
@ -39,12 +39,12 @@ void ComputeThreadNums(size_t *actor_thread_num, size_t *OMP_thread_num, size_t
|
|||
*actor_thread_num = *actor_thread_num > kActorThreadMaxNum ? kActorThreadMaxNum : *actor_thread_num;
|
||||
}
|
||||
|
||||
const size_t kOMPThreadMaxNum = 8;
|
||||
*OMP_thread_num = cpu_core_num < kOMPThreadMaxNum ? cpu_core_num : kOMPThreadMaxNum;
|
||||
*max_thread_num = cpu_core_num > *actor_thread_num ? cpu_core_num : (*actor_thread_num + 1);
|
||||
if (*max_thread_num > kMaxThreadNum) {
|
||||
*max_thread_num = kMaxThreadNum;
|
||||
}
|
||||
// Compute the actor and kernel thread num.
|
||||
const size_t kActorAndKernelThreadMaxNum = 23;
|
||||
*actor_and_kernel_thread_num = cpu_core_num > *actor_thread_num ? cpu_core_num : (*actor_thread_num + 1);
|
||||
*actor_and_kernel_thread_num = *actor_and_kernel_thread_num > kActorAndKernelThreadMaxNum
|
||||
? kActorAndKernelThreadMaxNum
|
||||
: *actor_and_kernel_thread_num;
|
||||
}
|
||||
|
||||
bool IsDeviceQueueDSActor(const AnfNodePtr &node, GraphExecutionStrategy strategy) {
|
||||
|
|
|
@ -69,14 +69,14 @@ enum class KernelTransformType {
|
|||
|
||||
#define SET_OPCONTEXT_FAIL_RET_WITH_ERROR(op_context, message) \
|
||||
{ \
|
||||
MS_LOG(ERROR) << message; \
|
||||
op_context.SetFailed(kFailure); \
|
||||
(op_context).error_info_ = message; \
|
||||
(op_context).SetFailed(kFailure); \
|
||||
return; \
|
||||
}
|
||||
|
||||
#define SET_OPCONTEXT_SUCCESS_RET(op_context) \
|
||||
{ \
|
||||
op_context.SetSuccess(kSuccess); \
|
||||
(op_context).SetSuccess(kSuccess); \
|
||||
return; \
|
||||
}
|
||||
|
||||
|
@ -85,8 +85,8 @@ enum class KernelTransformType {
|
|||
if (strategy == GraphExecutionStrategy::kStep) { \
|
||||
MS_LOG(EXCEPTION) << message; \
|
||||
} \
|
||||
MS_LOG(ERROR) << message; \
|
||||
op_context.SetFailed(kFailure); \
|
||||
(op_context).error_info_ = message; \
|
||||
(op_context).SetFailed(kFailure); \
|
||||
return; \
|
||||
}
|
||||
|
||||
|
@ -98,12 +98,12 @@ enum class KernelTransformType {
|
|||
if (strategy == GraphExecutionStrategy::kStep) { \
|
||||
MS_LOG(EXCEPTION) << message; \
|
||||
} \
|
||||
MS_LOG(ERROR) << message; \
|
||||
(op_context).error_info_ = message; \
|
||||
(op_context).SetFailed(kFailure); \
|
||||
return; \
|
||||
}
|
||||
|
||||
void ComputeThreadNums(size_t *actor_thread_num, size_t *OMP_thread_num, size_t *max_thread_num);
|
||||
void ComputeThreadNums(size_t *actor_thread_num, size_t *actor_and_kernel_thread_num);
|
||||
|
||||
bool IsDeviceQueueDSActor(const AnfNodePtr &node, GraphExecutionStrategy strategy = GraphExecutionStrategy::kPipeline);
|
||||
|
||||
|
|
|
@ -124,6 +124,7 @@ void DataPrepareActor::Init() {
|
|||
void DataPrepareActor::PrepareData(const std::vector<std::vector<TensorPtr>> &input_tensors,
|
||||
OpContext<DeviceTensor> *const context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
MS_LOG(INFO) << "Data prepare actor(" << GetAID().Name() << ") prepares data.";
|
||||
|
||||
// Convert actor running data from input tensors.
|
||||
if (input_tensors.size() > 0) {
|
||||
|
|
|
@ -51,12 +51,6 @@ class DataSourceActor : public DebugAwareActor {
|
|||
// The process entry of data processing.
|
||||
void FetchData(OpContext<DeviceTensor> *const context);
|
||||
|
||||
// The memory related operation interface.
|
||||
void SendMemoryAllocReq(OpContext<DeviceTensor> *const context) override{};
|
||||
void SendMemoryFreeReq(OpContext<DeviceTensor> *const context) override{};
|
||||
// Copy data from data source to the device tensor buffer of actor after memory alloc finished.
|
||||
void OnMemoryAllocFinish(OpContext<DeviceTensor> *const context) override{};
|
||||
|
||||
protected:
|
||||
friend class GraphScheduler;
|
||||
|
||||
|
@ -90,8 +84,10 @@ class DeviceQueueDataSourceActor : public DataSourceActor {
|
|||
|
||||
void Init() override;
|
||||
|
||||
// The memory related operation interface.
|
||||
void SendMemoryAllocReq(OpContext<DeviceTensor> *const context) override;
|
||||
void SendMemoryFreeReq(OpContext<DeviceTensor> *const context) override;
|
||||
// Copy data from data source to the device tensor buffer of actor after memory alloc finished.
|
||||
void OnMemoryAllocFinish(OpContext<DeviceTensor> *const context) override;
|
||||
|
||||
void SendDebugReq(OpContext<DeviceTensor> *const context) override;
|
||||
|
@ -122,8 +118,10 @@ class HostQueueDataSourceActor : public DataSourceActor {
|
|||
host_queue_(host_queue) {}
|
||||
~HostQueueDataSourceActor() override = default;
|
||||
|
||||
// The memory related operation interface.
|
||||
void SendMemoryAllocReq(OpContext<DeviceTensor> *const context) override;
|
||||
void SendMemoryFreeReq(OpContext<DeviceTensor> *const context) override;
|
||||
// Copy data from data source to the device tensor buffer of actor after memory alloc finished.
|
||||
void OnMemoryAllocFinish(OpContext<DeviceTensor> *const context) override;
|
||||
|
||||
size_t FetchNodePosition(const AnfNodePtr &node) const override;
|
||||
|
|
|
@ -39,7 +39,18 @@ void SuperKernelActor::RunOpData(OpData<DeviceTensor> *const input_data, OpConte
|
|||
auto &sequential_num = context->sequential_num_;
|
||||
(void)input_op_datas_[sequential_num].emplace_back(input_data);
|
||||
if (CheckRunningCondition(context)) {
|
||||
device_contexts_[0]->LaunchGraph(graph_);
|
||||
MS_LOG(INFO) << "Super kernel actor(" << GetAID().Name() << ") launches graph: " << graph_->graph_id();
|
||||
try {
|
||||
auto ret = device_contexts_[0]->LaunchGraph(graph_);
|
||||
if (!ret) {
|
||||
std::string error_info = "Launch graph failed, graph id: " + graph_->graph_id();
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), error_info);
|
||||
}
|
||||
} catch (const std::exception &e) {
|
||||
MsException::Instance().SetException();
|
||||
std::string error_info = "Launch graph failed, graph id: " + graph_->graph_id();
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), error_info);
|
||||
}
|
||||
|
||||
// The input is invalid and needs to be erased when finish kernel launch.
|
||||
EraseInput(context);
|
||||
|
@ -54,7 +65,18 @@ void SuperKernelActor::RunOpControl(AID *const input_control, OpContext<DeviceTe
|
|||
auto &sequential_num = context->sequential_num_;
|
||||
(void)input_op_controls_[sequential_num].emplace_back(input_control);
|
||||
if (CheckRunningCondition(context)) {
|
||||
device_contexts_[0]->LaunchGraph(graph_);
|
||||
MS_LOG(INFO) << "Super kernel actor(" << GetAID().Name() << ") launches graph: " << graph_->graph_id();
|
||||
try {
|
||||
auto ret = device_contexts_[0]->LaunchGraph(graph_);
|
||||
if (!ret) {
|
||||
std::string error_info = "Launch graph failed, graph id: " + graph_->graph_id();
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), error_info);
|
||||
}
|
||||
} catch (const std::exception &e) {
|
||||
MsException::Instance().SetException();
|
||||
std::string error_info = "Launch graph failed, graph id: " + graph_->graph_id();
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), error_info);
|
||||
}
|
||||
|
||||
// The input is invalid and needs to be erased when finish kernel launch.
|
||||
EraseInput(context);
|
||||
|
|
|
@ -17,26 +17,17 @@
|
|||
#ifndef MINDSPORE_CCSRC_RUNTIME_FRAMEWORK_ACTOR_SUPER_KERNEL_ACTOR_H_
|
||||
#define MINDSPORE_CCSRC_RUNTIME_FRAMEWORK_ACTOR_SUPER_KERNEL_ACTOR_H_
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <unordered_map>
|
||||
#include "runtime/framework/actor/actor_common.h"
|
||||
#include "runtime/framework/actor/debug_aware_actor.h"
|
||||
#include "runtime/framework/actor/actor_common.h"
|
||||
#include "runtime/hardware/device_context.h"
|
||||
#include "runtime/framework/device_tensor_store.h"
|
||||
#include "backend/kernel_compiler/kernel.h"
|
||||
#include "ir/anf.h"
|
||||
#include "ir/tensor.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
using mindspore::device::DeviceContext;
|
||||
using mindspore::device::KernelInfo;
|
||||
using mindspore::kernel::Address;
|
||||
using mindspore::kernel::KernelLaunchInfo;
|
||||
using mindspore::tensor::TensorPtr;
|
||||
|
||||
// The Super kernel actor is used to represent the sink executing of graph which is the combination of kernels.
|
||||
class SuperKernelActor : public DebugAwareActor {
|
||||
|
|
|
@ -35,6 +35,7 @@
|
|||
#endif
|
||||
#ifdef ENABLE_DUMP_IR
|
||||
#include "debug/rdr/recorder_manager.h"
|
||||
#include "debug/rdr/running_data_recorder.h"
|
||||
#endif
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
#include "debug/debugger/debugger.h"
|
||||
|
@ -77,6 +78,10 @@ std::vector<ActorReference> CollectActors(const ActorSet *actor_set) {
|
|||
MS_EXCEPTION_IF_NULL(kernel_actor);
|
||||
(void)actors.emplace_back(static_cast<ActorReference>(kernel_actor));
|
||||
}
|
||||
for (auto &super_kernel_actor : actor_set->super_kernel_actors_) {
|
||||
MS_EXCEPTION_IF_NULL(super_kernel_actor);
|
||||
(void)actors.emplace_back(static_cast<ActorReference>(super_kernel_actor));
|
||||
}
|
||||
for (auto &switch_actor : actor_set->switch_actors_) {
|
||||
MS_EXCEPTION_IF_NULL(switch_actor);
|
||||
(void)actors.emplace_back(static_cast<ActorReference>(switch_actor));
|
||||
|
@ -216,17 +221,15 @@ void GraphScheduler::Initialize() {
|
|||
|
||||
// Create the thread pool of actor runtime and Set the OMP_NUM_THREADS env.
|
||||
size_t actor_thread_num = 0;
|
||||
size_t OMP_thread_num = 0;
|
||||
size_t max_thread_num = 0;
|
||||
ComputeThreadNums(&actor_thread_num, &OMP_thread_num, &max_thread_num);
|
||||
size_t actor_and_kernel_thread_num = 0;
|
||||
ComputeThreadNums(&actor_thread_num, &actor_and_kernel_thread_num);
|
||||
auto actor_manager = ActorMgr::GetActorMgrRef();
|
||||
MS_EXCEPTION_IF_NULL(actor_manager);
|
||||
actor_manager->Initialize(true, actor_thread_num, max_thread_num);
|
||||
std::string OMP_env = std::to_string(OMP_thread_num);
|
||||
(void)common::SetEnv("OMP_NUM_THREADS", OMP_env.c_str(), 0);
|
||||
actor_manager->Initialize(true, actor_thread_num, actor_and_kernel_thread_num);
|
||||
(void)common::SetOMPThreadNum();
|
||||
auto OMP_thread_num_used = common::GetEnv("OMP_NUM_THREADS");
|
||||
MS_LOG(INFO) << "The actor thread number: " << actor_thread_num
|
||||
<< ", the computed OMP thread number : " << OMP_thread_num
|
||||
<< ", the kernel thread number: " << (actor_and_kernel_thread_num - actor_thread_num)
|
||||
<< ", the used OMP thread number: " << OMP_thread_num_used;
|
||||
|
||||
BuildAndScheduleGlobalActor();
|
||||
|
@ -315,7 +318,7 @@ void GraphScheduler::Schedule(const ActorSet *actor_set) {
|
|||
}
|
||||
}
|
||||
|
||||
bool GraphScheduler::Run(const ActorSet *actor_set, const std::vector<std::vector<TensorPtr>> &input_tensors,
|
||||
void GraphScheduler::Run(const ActorSet *actor_set, const std::vector<std::vector<TensorPtr>> &input_tensors,
|
||||
const std::vector<TensorPtr> &input_tensors_with_value_node, GraphExecutionStrategy strategy) {
|
||||
MS_EXCEPTION_IF_NULL(actor_set);
|
||||
MS_EXCEPTION_IF_NULL(actor_set->data_prepare_actor_);
|
||||
|
@ -334,7 +337,7 @@ bool GraphScheduler::Run(const ActorSet *actor_set, const std::vector<std::vecto
|
|||
actor_set->data_prepare_actor_->PrepareData(input_tensors, &op_context);
|
||||
MS_EXCEPTION_IF_NULL(actor_set->kernel_actors_[0]);
|
||||
actor_set->kernel_actors_[0]->RunOpControlWithInputTensor(nullptr, &op_context, &input_tensors_with_value_node);
|
||||
return true;
|
||||
return;
|
||||
}
|
||||
|
||||
// Trigger data prepare actor running.
|
||||
|
@ -344,7 +347,12 @@ bool GraphScheduler::Run(const ActorSet *actor_set, const std::vector<std::vecto
|
|||
auto result_future = result[0].GetFuture();
|
||||
result_future.Wait();
|
||||
MsException::Instance().CheckException();
|
||||
return result_future.IsOK();
|
||||
if (!result_future.IsOK()) {
|
||||
#ifdef ENABLE_DUMP_IR
|
||||
mindspore::RDR::TriggerAll();
|
||||
#endif
|
||||
MS_LOG(EXCEPTION) << op_context.error_info_;
|
||||
}
|
||||
}
|
||||
|
||||
ActorSet *GraphScheduler::Fetch(const ActorInfo &actor_info) const {
|
||||
|
@ -1883,7 +1891,7 @@ void GraphScheduler::DumpAbstractActor(const AbstractActor *actor, std::ofstream
|
|||
MS_EXCEPTION_IF_NULL(result_arrow);
|
||||
MS_EXCEPTION_IF_NULL(output_node);
|
||||
ofs << "\t\t\tfrom_output_node:" << output_node->fullname_with_scope()
|
||||
<< "tfrom_output_index:" << result_arrow->from_output_index_
|
||||
<< "\tfrom_output_index:" << result_arrow->from_output_index_
|
||||
<< "\tto_actor_name:" << result_arrow->to_op_id_.Name()
|
||||
<< "\toutput_node_position:" << result_arrow->to_input_index_ << "\n";
|
||||
}
|
||||
|
@ -1990,7 +1998,7 @@ void GraphScheduler::DumpSuperKernelActor(const SuperKernelActor *actor, std::of
|
|||
const auto &graph = actor->graph_;
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
|
||||
ofs << "\t\tgraph id:" << graph->graph_id() << "\tgraphl_name:" << graph->ToString()
|
||||
ofs << "\t\tgraph_id:" << graph->graph_id() << "\tgraphl_name:" << graph->ToString()
|
||||
<< "\tis_sink:" << graph->is_sink() << "\tinputs_num:" << (graph->input_nodes()).size()
|
||||
<< "\tkernels_num:" << (graph->execution_order()).size() << "\n";
|
||||
|
||||
|
@ -2035,7 +2043,7 @@ void GraphScheduler::DumpCopyActor(const CopyActor *actor, std::ofstream &ofs) c
|
|||
void GraphScheduler::DumpDeviceTensorStore(const GraphCompilerInfo &graph_compiler_info, std::ofstream &ofs) const {
|
||||
for (const auto &graph : graph_compiler_info.graphs_) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
ofs << "\tgraph id:" << graph->graph_id() << "\tis_sink:" << graph->is_sink() << "\n";
|
||||
ofs << "\tgraph_id:" << graph->graph_id() << "\tis_sink:" << graph->is_sink() << "\n";
|
||||
|
||||
for (auto &value_node : graph->graph_value_nodes()) {
|
||||
MS_EXCEPTION_IF_NULL(value_node);
|
||||
|
|
|
@ -105,7 +105,7 @@ class GraphScheduler {
|
|||
void Schedule(const ActorSet *actor_set);
|
||||
|
||||
// The processing entry of actors running. The third parameter is used only in the step execution strategy.
|
||||
bool Run(const ActorSet *actor_set, const std::vector<std::vector<TensorPtr>> &input_tensors,
|
||||
void Run(const ActorSet *actor_set, const std::vector<std::vector<TensorPtr>> &input_tensors,
|
||||
const std::vector<TensorPtr> &input_tensors_with_value_node = {},
|
||||
GraphExecutionStrategy strategy = GraphExecutionStrategy::kPipeline);
|
||||
|
||||
|
|
|
@ -42,9 +42,6 @@
|
|||
#ifndef ENABLE_SECURITY
|
||||
#include "debug/data_dump/dump_json_parser.h"
|
||||
#endif
|
||||
#ifdef ENABLE_DUMP_IR
|
||||
#include "debug/rdr/running_data_recorder.h"
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
namespace compile {
|
||||
|
@ -846,12 +843,7 @@ void MindRTBackend::RunGraph(const ActorInfo &actor_info, const VectorRef &args,
|
|||
mindspore::ScopedLongRunning long_running;
|
||||
const auto &actor_set = runtime::GraphScheduler::GetInstance().Fetch(actor_info);
|
||||
MS_EXCEPTION_IF_NULL(actor_set);
|
||||
if (!runtime::GraphScheduler::GetInstance().Run(actor_set, input_tensors)) {
|
||||
#ifdef ENABLE_DUMP_IR
|
||||
mindspore::RDR::TriggerAll();
|
||||
#endif
|
||||
MS_LOG(EXCEPTION) << "The actor runs failed, actor name: " << actor_set->name_;
|
||||
}
|
||||
runtime::GraphScheduler::GetInstance().Run(actor_set, input_tensors);
|
||||
|
||||
if (graph_compiler_info.device_contexts_.empty()) {
|
||||
MS_LOG(EXCEPTION) << "The device contexts is empty.";
|
||||
|
@ -1057,15 +1049,6 @@ void MindRTBackend::RunGraph(const ActorInfo &actor_info, OpRunInfo *op_run_info
|
|||
MS_EXCEPTION_IF_NULL(input_tensors);
|
||||
MS_EXCEPTION_IF_NULL(op_run_info);
|
||||
MS_EXCEPTION_IF_NULL(tensors_mask);
|
||||
const auto &graph_iter = actor_to_graph_compiler_info_.find(actor_info);
|
||||
if (graph_iter == actor_to_graph_compiler_info_.end()) {
|
||||
MS_LOG(EXCEPTION) << "Can't find the graph compiler info.";
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(graph_iter->second);
|
||||
const auto &graph_compiler_info = *(graph_iter->second);
|
||||
|
||||
const auto &actor_set = runtime::GraphScheduler::GetInstance().Fetch(actor_info);
|
||||
MS_EXCEPTION_IF_NULL(actor_set);
|
||||
|
||||
// Erase value node tensor.
|
||||
std::vector<tensor::TensorPtr> tensors_without_value_node;
|
||||
|
@ -1086,12 +1069,19 @@ void MindRTBackend::RunGraph(const ActorInfo &actor_info, OpRunInfo *op_run_info
|
|||
}
|
||||
}
|
||||
|
||||
if (!runtime::GraphScheduler::GetInstance().Run(actor_set, {tensors_without_value_node}, *input_tensors,
|
||||
runtime::GraphExecutionStrategy::kStep)) {
|
||||
MS_LOG(EXCEPTION) << "The actor runs failed, actor name: " << actor_set->name_;
|
||||
}
|
||||
// Run actor DAG.
|
||||
const auto &actor_set = runtime::GraphScheduler::GetInstance().Fetch(actor_info);
|
||||
MS_EXCEPTION_IF_NULL(actor_set);
|
||||
runtime::GraphScheduler::GetInstance().Run(actor_set, {tensors_without_value_node}, *input_tensors,
|
||||
runtime::GraphExecutionStrategy::kStep);
|
||||
|
||||
// Fetch outputs.
|
||||
const auto &graph_iter = actor_to_graph_compiler_info_.find(actor_info);
|
||||
if (graph_iter == actor_to_graph_compiler_info_.end()) {
|
||||
MS_LOG(EXCEPTION) << "Can't find the graph compiler info.";
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(graph_iter->second);
|
||||
const auto &graph_compiler_info = *(graph_iter->second);
|
||||
const auto &graph = graph_compiler_info.graphs_.front();
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(graph_compiler_);
|
||||
|
|
|
@ -60,6 +60,8 @@ struct OpContext {
|
|||
uuids::uuid *sequential_num_;
|
||||
std::vector<OpDataPtr<T>> *output_data_;
|
||||
std::vector<Promise<int>> *results_;
|
||||
// Record the error info for print.
|
||||
std::string error_info_{""};
|
||||
const void *kernel_call_back_before_;
|
||||
const void *kernel_call_back_after_;
|
||||
|
||||
|
|
|
@ -51,12 +51,17 @@ static inline int SetEnv(const char *envname, const char *envvar, int overwrite
|
|||
}
|
||||
|
||||
static inline void SetOMPThreadNum() {
|
||||
size_t cpu_core_num = std::thread::hardware_concurrency();
|
||||
size_t cpu_core_num_half = cpu_core_num / 2;
|
||||
const size_t kOMPThreadMaxNum = 16;
|
||||
const size_t kOMPThreadMinNum = 1;
|
||||
// The actor concurrent execution max num.
|
||||
const size_t kActorConcurrentMaxNum = 4;
|
||||
|
||||
size_t OMP_thread_num = cpu_core_num_half < kOMPThreadMinNum ? kOMPThreadMinNum : cpu_core_num_half;
|
||||
size_t cpu_core_num = std::thread::hardware_concurrency();
|
||||
size_t cpu_core_num_half = cpu_core_num / 2;
|
||||
// Ensure that the calculated number of OMP threads is at most half the number of CPU cores.
|
||||
size_t OMP_thread_num = cpu_core_num_half / kActorConcurrentMaxNum;
|
||||
|
||||
OMP_thread_num = OMP_thread_num < kOMPThreadMinNum ? kOMPThreadMinNum : OMP_thread_num;
|
||||
OMP_thread_num = OMP_thread_num > kOMPThreadMaxNum ? kOMPThreadMaxNum : OMP_thread_num;
|
||||
|
||||
std::string OMP_env = std::to_string(OMP_thread_num);
|
||||
|
|
Loading…
Reference in New Issue