!14860 add resnet18 310 infer in readme

From: @jiangzg001
Reviewed-by: @c_34,@oacjiewen
Signed-off-by: @c_34
This commit is contained in:
mindspore-ci-bot 2021-04-09 19:26:31 +08:00 committed by Gitee
commit efe5b8bc13
3 changed files with 72 additions and 2 deletions

View File

@ -12,6 +12,10 @@
- [Script Parameters](#script-parameters) - [Script Parameters](#script-parameters)
- [Training Process](#training-process) - [Training Process](#training-process)
- [Evaluation Process](#evaluation-process) - [Evaluation Process](#evaluation-process)
- [Inference Process](#inference-process)
- [Export MindIR](#export-mindir)
- [Infer on Ascend310](#infer-on-ascend310)
- [result](#result)
- [Model Description](#model-description) - [Model Description](#model-description)
- [Performance](#performance) - [Performance](#performance)
- [Evaluation Performance](#evaluation-performance) - [Evaluation Performance](#evaluation-performance)
@ -479,6 +483,37 @@ result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.7680657810499
``` ```
## Inference Process
### [Export MindIR](#contents)
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
The ckpt_file parameter is required,
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
### Infer on Ascend310
Before performing inference, the mindir file must bu exported by `export.py` script. We only provide an example of inference using MINDIR model.
Current batch_Size can only be set to 1. The precision calculation process needs about 70G+ memory space, otherwise the process will be killed for execeeding memory limits.
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
```
- `DEVICE_ID` is optional, default value is 0.
### result
Inference result is saved in current path, you can find result like this in acc.log file.
```bash
top1_accuracy:70.42, top5_accuracy:89.7
```
# [Model Description](#contents) # [Model Description](#contents)
## [Performance](#contents) ## [Performance](#contents)

View File

@ -14,6 +14,10 @@
- [脚本参数](#脚本参数) - [脚本参数](#脚本参数)
- [训练过程](#训练过程) - [训练过程](#训练过程)
- [评估过程](#评估过程) - [评估过程](#评估过程)
- [推理过程](#推理过程)
- [导出MindIR](#导出mindir)
- [在Ascend310执行推理](#在ascend310执行推理)
- [结果](#结果)
- [模型描述](#模型描述) - [模型描述](#模型描述)
- [性能](#性能) - [性能](#性能)
- [评估性能](#评估性能) - [评估性能](#评估性能)
@ -446,6 +450,37 @@ result:{'top_5_accuracy':0.9342589628681178, 'top_1_accuracy':0.768065781049936}
``` ```
## 推理过程
### [导出MindIR](#contents)
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
参数ckpt_file为必填项
`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中选择。
### 在Ascend310执行推理
在执行推理前mindir文件必须通过`export.py`脚本导出。以下展示了使用minir模型执行推理的示例。
目前仅支持batch_Size为1的推理。精度计算过程需要70G+的内存,否则进程将会因为超出内存被系统终止。
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
```
- `DEVICE_ID` 可选默认值为0。
### 结果
推理结果保存在脚本执行的当前路径你可以在acc.log中看到以下精度计算结果。
```bash
top1_accuracy:70.42, top5_accuracy:89.7
```
# 模型描述 # 模型描述
## 性能 ## 性能

View File

@ -55,7 +55,7 @@ fi
function compile_app() function compile_app()
{ {
cd ../ascend310_infer/src/ cd ../ascend310_infer/src/ || exit
if [ -f "Makefile" ]; then if [ -f "Makefile" ]; then
make clean make clean
fi fi
@ -64,7 +64,7 @@ function compile_app()
function infer() function infer()
{ {
cd - cd - || exit
if [ -d result_Files ]; then if [ -d result_Files ]; then
rm -rf ./result_Files rm -rf ./result_Files
fi fi