forked from mindspore-Ecosystem/mindspore
change error log
This commit is contained in:
parent
33800c7f31
commit
efabace125
|
@ -1003,7 +1003,13 @@ int64_t CheckSliceMember(const AbstractBasePtr &member, int64_t default_value, c
|
|||
return default_value;
|
||||
}
|
||||
|
||||
MS_LOG(EXCEPTION) << "The argument of SliceMember operator must be a Scalar or None, but got " << member->ToString();
|
||||
if (member->isa<abstract::AbstractTensor>()) {
|
||||
MS_EXCEPTION(TypeError)
|
||||
<< "The argument of SliceMember operator must be a Scalar or None or constant Tensor, but got a variable Tensor";
|
||||
}
|
||||
MS_EXCEPTION(TypeError)
|
||||
<< "The argument of SliceMember operator must be a Scalar or None or constant Tensor, but got "
|
||||
<< member->BuildType()->ToString();
|
||||
}
|
||||
|
||||
void GenerateTupleSliceParameter(const abstract::AbstractSequencePtr &tuple, const AbstractSlicePtr &slice,
|
||||
|
|
|
@ -194,7 +194,7 @@ class SequenceSlice : public MetaFuncGraph {
|
|||
: MetaFuncGraph(name), prim_(prim), get_item_(get_item) {}
|
||||
~SequenceSlice() override = default;
|
||||
MS_DECLARE_PARENT(SequenceSlice, MetaFuncGraph)
|
||||
FuncGraphPtr GenerateFuncGraph(const AbstractBasePtrList &args_spec_list) override;
|
||||
FuncGraphPtr GenerateFuncGraph(const AbstractBasePtrList &args_spec_list) final;
|
||||
friend bool operator==(const SequenceSlice &lhs, const SequenceSlice &rhs) { return lhs.name_ == rhs.name_; }
|
||||
virtual std::pair<abstract::AbstractSequencePtr, abstract::AbstractSlicePtr> CheckArgs(
|
||||
const AbstractBasePtrList &args_spec_list) = 0;
|
||||
|
|
|
@ -1149,7 +1149,7 @@ EvalResultPtr GetEvaluatedValueForBuiltinTypeAttrOrMethod(const AnalysisEnginePt
|
|||
if (require.empty()) {
|
||||
require = pipeline::Resource::GetAttrPtr(data_type->type_id(), item_name);
|
||||
if (require.empty()) {
|
||||
MS_LOG(EXCEPTION) << "Not supported to get attribute item name:\'" << item_name << "\' of a type["
|
||||
MS_LOG(EXCEPTION) << "MindSpore not support to get attribute \'" << item_name << "\' of a type["
|
||||
<< data_type->ToString() << "]";
|
||||
}
|
||||
require_type = REQUIRE_TYPE::ATTR;
|
||||
|
|
|
@ -338,11 +338,11 @@ AbstractBasePtr InferImplCTCGreedyDecoder(const AnalysisEnginePtr &, const Primi
|
|||
|
||||
AbstractBasePtr InferImplPad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
const std::string op_name = primitive->name();
|
||||
CheckArgsSize(op_name, args_spec_list, 1);
|
||||
auto arg = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
|
||||
auto input_shp = arg->shape()->shape();
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto padding_attr = primitive->GetAttr("paddings");
|
||||
MS_EXCEPTION_IF_NULL(padding_attr);
|
||||
if (!padding_attr->isa<ValueTuple>()) {
|
||||
|
|
|
@ -21,6 +21,7 @@ from ...components.function.compile_block import CompileBlockBC
|
|||
from ...components.function.run_block import RunBlockBC
|
||||
from ...components.function_inputs_policy.cartesian_product_on_id_for_function_inputs import IdCartesianProductFIPC
|
||||
from ...components.inputs.generate_inputs_from_shape import GenerateFromShapeDC
|
||||
from ...components.inputs.get_inputs_from_config import IdentityDC
|
||||
|
||||
# pylint: disable=W0105
|
||||
"""
|
||||
|
@ -61,3 +62,7 @@ pipeline_for_compile_forward_ge_graph_for_case_by_case_config = [MeFacadeFC, Gen
|
|||
|
||||
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception = [MeFacadeFC, GenerateFromShapeDC, RunBlockBC,
|
||||
IdCartesianProductFIPC]
|
||||
|
||||
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_input_list = [MeFacadeFC, RunBlockBC,
|
||||
IdCartesianProductFIPC, IdentityEC,
|
||||
IdentityDC]
|
||||
|
|
|
@ -0,0 +1,204 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test_list_slice """
|
||||
import numpy as np
|
||||
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
||||
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
||||
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config_input_list
|
||||
from ....mindspore_test_framework.pipeline.forward.verify_exception \
|
||||
import pipeline_for_verify_exception_for_case_by_case_config
|
||||
|
||||
|
||||
class NetWork_1(Cell):
|
||||
""" NetWork_1 definition """
|
||||
|
||||
def __init__(self):
|
||||
super(NetWork_1, self).__init__()
|
||||
self.addN = P.AddN()
|
||||
self.index_0 = Tensor(3)
|
||||
self.index_1 = Tensor([5])
|
||||
self.index_3 = Tensor([True])
|
||||
|
||||
def construct(self, tensor_list):
|
||||
tensor_list_slice0 = tensor_list[:]
|
||||
tensor_list_slice1 = tensor_list[:self.index_0]
|
||||
tensor_list_slice2 = tensor_list[self.index_3:]
|
||||
tensor_list_slice3 = tensor_list[2:self.index_1:True]
|
||||
sum0 = self.addN(tensor_list_slice0)
|
||||
sum1 = self.addN(tensor_list_slice1)
|
||||
sum2 = self.addN(tensor_list_slice2)
|
||||
sum3 = self.addN(tensor_list_slice3)
|
||||
ret = sum0 + sum1 + sum2 + sum3
|
||||
return ret
|
||||
|
||||
|
||||
class NetWork_2(Cell):
|
||||
""" NetWork_2 definition """
|
||||
|
||||
def __init__(self):
|
||||
super(NetWork_2, self).__init__()
|
||||
self.addN = P.AddN()
|
||||
self.step = Tensor([-1])
|
||||
self.index_0 = Tensor(-6)
|
||||
|
||||
def construct(self, tensor_list):
|
||||
tensor_list_slice0 = tensor_list[::self.step]
|
||||
tensor_list_slice1 = tensor_list[-1::-1]
|
||||
tensor_list_slice2 = tensor_list[:-4:-1]
|
||||
tensor_list_slice3 = tensor_list[self.index_0:3]
|
||||
tensor_list_slice4 = tensor_list[-1:-6:-2]
|
||||
sum0 = self.addN(tensor_list_slice0)
|
||||
sum1 = self.addN(tensor_list_slice1)
|
||||
sum2 = self.addN(tensor_list_slice2)
|
||||
sum3 = self.addN(tensor_list_slice3)
|
||||
sum4 = self.addN(tensor_list_slice4)
|
||||
ret = sum0 + sum1 + sum2 + sum3 + sum4
|
||||
return ret
|
||||
|
||||
|
||||
class NetWorkSliceStepZero(Cell):
|
||||
""" NetWorkSliceStepZero definition """
|
||||
|
||||
def __init__(self):
|
||||
super(NetWorkSliceStepZero, self).__init__()
|
||||
self.start = 0
|
||||
self.stop = 3
|
||||
self.step = 0
|
||||
|
||||
def construct(self, tensor_list):
|
||||
tensor_list_slice = tensor_list[self.start:self.stop:self.step]
|
||||
return tensor_list_slice
|
||||
|
||||
|
||||
class NetWorkOutOfBounds(Cell):
|
||||
""" NetWork_3 definition """
|
||||
|
||||
def __init__(self):
|
||||
super(NetWorkOutOfBounds, self).__init__()
|
||||
self.index = 100
|
||||
|
||||
def construct(self, tensor_list):
|
||||
return tensor_list[self.index]
|
||||
|
||||
|
||||
class NetWorkTensorSizeGreaterThanTwo(Cell):
|
||||
""" NetWork_3 definition """
|
||||
|
||||
def __init__(self):
|
||||
super(NetWorkTensorSizeGreaterThanTwo, self).__init__()
|
||||
self.index_0 = Tensor([2, 3])
|
||||
|
||||
def construct(self, tensor_list):
|
||||
return tensor_list[1:self.index_0]
|
||||
|
||||
|
||||
class NetWorkTensorDtypeFloat(Cell):
|
||||
""" NetWork_3 definition """
|
||||
|
||||
def __init__(self):
|
||||
super(NetWorkTensorDtypeFloat, self).__init__()
|
||||
self.index_0 = Tensor([2.1])
|
||||
|
||||
def construct(self, tensor_list):
|
||||
return tensor_list[1:self.index_0]
|
||||
|
||||
class NewWorkSliceVarTensorError(Cell):
|
||||
""" error Network definition """
|
||||
|
||||
def __init__(self):
|
||||
super(NewWorkSliceVarTensorError, self).__init__()
|
||||
self.index_0 = Tensor(2)
|
||||
|
||||
def construct(self, tensor_list, y):
|
||||
x = y + self.index_0
|
||||
return tensor_list[1:x]
|
||||
|
||||
test_cases = [
|
||||
('SlicePositive', {
|
||||
'block': NetWork_1(),
|
||||
'desc_inputs': [[Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32))]],
|
||||
}),
|
||||
('SliceNegative', {
|
||||
'block': NetWork_2(),
|
||||
'desc_inputs': [[Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32))]],
|
||||
}),
|
||||
]
|
||||
|
||||
test_cases_for_verify_exception = [
|
||||
('SliceStepZero', {
|
||||
'block': (NetWorkSliceStepZero(), {'exception': ValueError}),
|
||||
'desc_inputs': [[Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32))]],
|
||||
}),
|
||||
('SliceOutOfBounds', {
|
||||
'block': (NetWorkOutOfBounds(), {'exception': IndexError}),
|
||||
'desc_inputs': [[Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32))]],
|
||||
}),
|
||||
('SliceTensorSizeGreaterThanTwo', {
|
||||
'block': (NetWorkTensorSizeGreaterThanTwo(), {'exception': TypeError}),
|
||||
'desc_inputs': [[Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32))]],
|
||||
}),
|
||||
('SliceTensorDtypeFloat', {
|
||||
'block': (NetWorkTensorDtypeFloat(), {'exception': TypeError}),
|
||||
'desc_inputs': [[Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32))]],
|
||||
}),
|
||||
('NewWorkSliceVarTensorError', {
|
||||
'block': (NewWorkSliceVarTensorError(), {'exception': TypeError}),
|
||||
'desc_inputs': [[Tensor(np.ones([2, 3, 4], np.int32)),
|
||||
Tensor(np.zeros([2, 3, 4], np.int32)),
|
||||
Tensor(np.ones([2, 3, 4], np.int32))], Tensor(1)],
|
||||
}),
|
||||
]
|
||||
|
||||
|
||||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_input_list)
|
||||
def test_compile():
|
||||
"""
|
||||
Feature: test list slice
|
||||
Description: test list slice positive and negative
|
||||
Expectation: success
|
||||
"""
|
||||
return test_cases
|
||||
|
||||
|
||||
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
|
||||
def test_check_exception():
|
||||
"""
|
||||
Feature: test list getitem exception
|
||||
Description: test list getitem exception
|
||||
Expectation: throw errors
|
||||
"""
|
||||
return test_cases_for_verify_exception
|
Loading…
Reference in New Issue