forked from mindspore-Ecosystem/mindspore
!15607 bugfix-issue:DepthToSpace SyncHostToDevice failed and the result is incorrect.
From: @kanghui0204 Reviewed-by: @liangchenghui,@tom__chen Signed-off-by: @liangchenghui
This commit is contained in:
commit
ef535c360a
|
@ -41,25 +41,11 @@ class DepthToSpaceFwdKernel : public GpuKernel {
|
|||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
// get device buffer shape ptr
|
||||
size_t *input_shape = GetDeviceAddress<size_t>(workspace, 0);
|
||||
size_t *output_shape = GetDeviceAddress<size_t>(workspace, 1);
|
||||
|
||||
// buffer shape memcpy from host to device
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(input_shape, &input_shape_[0], workspace_size1_, cudaMemcpyHostToDevice,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync input_shape failed");
|
||||
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(output_shape, &output_shape_[0], workspace_size2_,
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync input_shape failed");
|
||||
// get input size
|
||||
size_t size = input_size_ / sizeof(T);
|
||||
|
||||
// call cuda kernel
|
||||
CalDepthToSpace(size, input, input_shape, output_shape, block_size_, output,
|
||||
CalDepthToSpace(size, input, in_, ic_, ih_, iw_, on_, oc_, oh_, ow_, block_size_, output,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
@ -89,14 +75,20 @@ class DepthToSpaceFwdKernel : public GpuKernel {
|
|||
input_size_ = 1;
|
||||
for (size_t i = 0; i < shape_size_; i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
input_shape_.push_back(input_shape[i]);
|
||||
}
|
||||
input_size_ *= sizeof(T);
|
||||
output_size_ = input_size_;
|
||||
output_shape_.push_back(input_shape[0]);
|
||||
output_shape_.push_back(input_shape[1] / block_size_ / block_size_);
|
||||
output_shape_.push_back(input_shape[2] * block_size_);
|
||||
output_shape_.push_back(input_shape[3] * block_size_);
|
||||
|
||||
in_ = input_shape[0];
|
||||
ic_ = input_shape[1];
|
||||
ih_ = input_shape[2];
|
||||
iw_ = input_shape[3];
|
||||
|
||||
on_ = in_;
|
||||
oc_ = ic_ / block_size_ / block_size_;
|
||||
oh_ = ih_ * block_size_;
|
||||
ow_ = iw_ * block_size_;
|
||||
|
||||
// Private members Initialize
|
||||
InitSizeLists();
|
||||
return true;
|
||||
|
@ -107,11 +99,15 @@ class DepthToSpaceFwdKernel : public GpuKernel {
|
|||
input_size_ = 0;
|
||||
output_size_ = 0;
|
||||
block_size_ = 0;
|
||||
workspace_size1_ = 0;
|
||||
workspace_size2_ = 0;
|
||||
in_ = 0;
|
||||
ic_ = 0;
|
||||
ih_ = 0;
|
||||
iw_ = 0;
|
||||
on_ = 0;
|
||||
oc_ = 0;
|
||||
oh_ = 0;
|
||||
ow_ = 0;
|
||||
|
||||
input_shape_.clear();
|
||||
output_shape_.clear();
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
|
@ -121,16 +117,10 @@ class DepthToSpaceFwdKernel : public GpuKernel {
|
|||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
workspace_size1_ = shape_size_ * sizeof(size_t);
|
||||
workspace_size2_ = shape_size_ * sizeof(size_t);
|
||||
workspace_size_list_.push_back(workspace_size1_);
|
||||
workspace_size_list_.push_back(workspace_size2_);
|
||||
return;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
|
@ -138,8 +128,14 @@ class DepthToSpaceFwdKernel : public GpuKernel {
|
|||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
size_t block_size_;
|
||||
size_t workspace_size1_;
|
||||
size_t workspace_size2_;
|
||||
size_t in_;
|
||||
size_t ic_;
|
||||
size_t ih_;
|
||||
size_t iw_;
|
||||
size_t on_;
|
||||
size_t oc_;
|
||||
size_t oh_;
|
||||
size_t ow_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -41,25 +41,11 @@ class SpaceToDepthFwdKernel : public GpuKernel {
|
|||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
// get device buffer shape ptr
|
||||
size_t *input_shape = GetDeviceAddress<size_t>(workspace, 0);
|
||||
size_t *output_shape = GetDeviceAddress<size_t>(workspace, 1);
|
||||
|
||||
// buffer shape memcpy from host to device
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(input_shape, &input_shape_[0], workspace_size1_, cudaMemcpyHostToDevice,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync input_shape failed");
|
||||
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(output_shape, &output_shape_[0], workspace_size2_,
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync input_shape failed");
|
||||
// get input size
|
||||
size_t size = input_size_ / sizeof(T);
|
||||
|
||||
// call cuda kernel
|
||||
CalSpaceToDepth(size, input, input_shape, output_shape, block_size_, output,
|
||||
CalSpaceToDepth(size, input, in_, ic_, ih_, iw_, on_, oc_, oh_, ow_, block_size_, output,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
@ -89,14 +75,19 @@ class SpaceToDepthFwdKernel : public GpuKernel {
|
|||
input_size_ = 1;
|
||||
for (size_t i = 0; i < shape_size_; i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
input_shape_.push_back(input_shape[i]);
|
||||
}
|
||||
input_size_ *= sizeof(T);
|
||||
output_size_ = input_size_;
|
||||
output_shape_.push_back(input_shape[0]);
|
||||
output_shape_.push_back(input_shape[1] * block_size_ * block_size_);
|
||||
output_shape_.push_back(input_shape[2] / block_size_);
|
||||
output_shape_.push_back(input_shape[3] / block_size_);
|
||||
|
||||
in_ = input_shape[0];
|
||||
ic_ = input_shape[1];
|
||||
ih_ = input_shape[2];
|
||||
iw_ = input_shape[3];
|
||||
|
||||
on_ = in_;
|
||||
oc_ = ic_ * block_size_ * block_size_;
|
||||
oh_ = ih_ / block_size_;
|
||||
ow_ = iw_ / block_size_;
|
||||
// Private members Initialize
|
||||
InitSizeLists();
|
||||
return true;
|
||||
|
@ -107,11 +98,15 @@ class SpaceToDepthFwdKernel : public GpuKernel {
|
|||
input_size_ = 0;
|
||||
output_size_ = 0;
|
||||
block_size_ = 0;
|
||||
workspace_size1_ = 0;
|
||||
workspace_size2_ = 0;
|
||||
in_ = 0;
|
||||
ic_ = 0;
|
||||
ih_ = 0;
|
||||
iw_ = 0;
|
||||
on_ = 0;
|
||||
oc_ = 0;
|
||||
oh_ = 0;
|
||||
ow_ = 0;
|
||||
|
||||
input_shape_.clear();
|
||||
output_shape_.clear();
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
|
@ -121,16 +116,10 @@ class SpaceToDepthFwdKernel : public GpuKernel {
|
|||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
workspace_size1_ = shape_size_ * sizeof(size_t);
|
||||
workspace_size2_ = shape_size_ * sizeof(size_t);
|
||||
workspace_size_list_.push_back(workspace_size1_);
|
||||
workspace_size_list_.push_back(workspace_size2_);
|
||||
return;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
|
@ -138,8 +127,14 @@ class SpaceToDepthFwdKernel : public GpuKernel {
|
|||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
size_t block_size_;
|
||||
size_t workspace_size1_;
|
||||
size_t workspace_size2_;
|
||||
size_t in_;
|
||||
size_t ic_;
|
||||
size_t ih_;
|
||||
size_t iw_;
|
||||
size_t on_;
|
||||
size_t oc_;
|
||||
size_t oh_;
|
||||
size_t ow_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -13,79 +13,126 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include "depthtospace_impl.cuh"
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
__global__ void DepthToSpace(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
|
||||
const size_t r, T *output) {
|
||||
__global__ void DepthToSpace(const size_t size, const T *input, const size_t in,
|
||||
const size_t ic, const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc, const size_t oh,
|
||||
const size_t ow, const size_t r, T *output) {
|
||||
size_t temp_stride = 0;
|
||||
size_t temp_pos = 0;
|
||||
size_t input_pos = 0;
|
||||
size_t input_pos_array[DEPTHTOSPACE_BUFFER_DIMENSION];
|
||||
size_t output_pos_array[DEPTHTOSPACE_BUFFER_DIMENSION];
|
||||
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
temp_stride = output_shape[1] * output_shape[2] * output_shape[3];
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size;
|
||||
pos += blockDim.x * gridDim.x) {
|
||||
temp_stride = oc * oh * ow;
|
||||
output_pos_array[0] = pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
for (size_t i = 1; i < DEPTHTOSPACE_BUFFER_DIMENSION; i++) {
|
||||
temp_stride /= output_shape[i];
|
||||
output_pos_array[i] = temp_pos / temp_stride;
|
||||
temp_pos %= temp_stride;
|
||||
}
|
||||
temp_stride /= oc;
|
||||
output_pos_array[1] = temp_pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
input_pos_array[0] = output_pos_array[0];
|
||||
input_pos_array[1] = output_pos_array[1] * r * r + r * (output_pos_array[2] % r) + output_pos_array[3] % r;
|
||||
input_pos_array[2] = output_pos_array[2] / r;
|
||||
input_pos_array[3] = output_pos_array[3] / r;
|
||||
temp_stride /= oh;
|
||||
output_pos_array[2] = temp_pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
for (size_t i = 0; i < 3; ++i) {
|
||||
input_pos += input_pos_array[i];
|
||||
input_pos *= input_shape[i + 1];
|
||||
}
|
||||
input_pos += input_pos_array[3];
|
||||
temp_stride /= ow;
|
||||
output_pos_array[3] = temp_pos / temp_stride;
|
||||
|
||||
input_pos += output_pos_array[0];
|
||||
input_pos =
|
||||
(input_pos * ic) +
|
||||
(output_pos_array[1] +
|
||||
(r * (output_pos_array[2] % r) + output_pos_array[3] % r) * oc);
|
||||
input_pos = (input_pos * ih) + (output_pos_array[2] / r);
|
||||
input_pos = (input_pos * iw) + (output_pos_array[3] / r);
|
||||
|
||||
output[pos] = input[input_pos];
|
||||
input_pos = 0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalDepthToSpace(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
|
||||
const size_t r, T *output, cudaStream_t cuda_stream) {
|
||||
DepthToSpace<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, input_shape, output_shape, r, output);
|
||||
void CalDepthToSpace(const size_t size, const T *input, const size_t in,
|
||||
const size_t ic, const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc, const size_t oh,
|
||||
const size_t ow, const size_t r, T *output,
|
||||
cudaStream_t cuda_stream) {
|
||||
DepthToSpace<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
|
||||
size, input, in, ic, ih, iw, on, oc, oh, ow, r, output);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalDepthToSpace<float>(const size_t size, const float *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, float *output,
|
||||
template void CalDepthToSpace<float>(const size_t size, const float *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, float *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<half>(const size_t size, const half *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, half *output, cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<int>(const size_t size, const int *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, int *output, cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<int64_t>(const size_t size, const int64_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, int64_t *output,
|
||||
template void CalDepthToSpace<half>(const size_t size, const half *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, half *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<int>(const size_t size, const int *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, int *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<int64_t>(const size_t size, const int64_t *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, int64_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<int16_t>(const size_t size, const int16_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, int16_t *output,
|
||||
template void CalDepthToSpace<int16_t>(const size_t size, const int16_t *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, int16_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<int8_t>(const size_t size, const int8_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, int8_t *output,
|
||||
template void CalDepthToSpace<int8_t>(const size_t size, const int8_t *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, int8_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<uint8_t>(const size_t size, const uint8_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, uint8_t *output,
|
||||
template void CalDepthToSpace<uint8_t>(const size_t size, const uint8_t *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, uint8_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<uint16_t>(const size_t size, const uint16_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, uint16_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<uint32_t>(const size_t size, const uint32_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, uint32_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalDepthToSpace<uint64_t>(const size_t size, const uint64_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, uint64_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void
|
||||
CalDepthToSpace<uint16_t>(const size_t size, const uint16_t *input,
|
||||
const size_t in, const size_t ic, const size_t ih,
|
||||
const size_t iw, const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow, const size_t r,
|
||||
uint16_t *output, cudaStream_t cuda_stream);
|
||||
template void
|
||||
CalDepthToSpace<uint32_t>(const size_t size, const uint32_t *input,
|
||||
const size_t in, const size_t ic, const size_t ih,
|
||||
const size_t iw, const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow, const size_t r,
|
||||
uint32_t *output, cudaStream_t cuda_stream);
|
||||
template void
|
||||
CalDepthToSpace<uint64_t>(const size_t size, const uint64_t *input,
|
||||
const size_t in, const size_t ic, const size_t ih,
|
||||
const size_t iw, const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow, const size_t r,
|
||||
uint64_t *output, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -19,7 +19,10 @@
|
|||
|
||||
#define DEPTHTOSPACE_BUFFER_DIMENSION 4
|
||||
template <typename T>
|
||||
void CalDepthToSpace(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
|
||||
const size_t r, T *output, cudaStream_t cuda_stream);
|
||||
void CalDepthToSpace(const size_t size, const T *input, const size_t in,
|
||||
const size_t ic, const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc, const size_t oh,
|
||||
const size_t ow, const size_t r, T *output,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_DEPTHTOSPACE_H_
|
||||
|
|
|
@ -19,73 +19,120 @@
|
|||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
__global__ void SpaceToDepth(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
|
||||
const size_t r, T *output) {
|
||||
__global__ void SpaceToDepth(const size_t size, const T *input, const size_t in,
|
||||
const size_t ic, const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc, const size_t oh,
|
||||
const size_t ow, const size_t r, T *output) {
|
||||
size_t temp_stride = 0;
|
||||
size_t temp_pos = 0;
|
||||
size_t output_pos = 0;
|
||||
size_t input_pos_array[SPACETODEPTH_BUFFER_DIMENSION];
|
||||
size_t output_pos_array[SPACETODEPTH_BUFFER_DIMENSION];
|
||||
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
temp_stride = input_shape[1] * input_shape[2] * input_shape[3];
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size;
|
||||
pos += blockDim.x * gridDim.x) {
|
||||
temp_stride = ic * ih * iw;
|
||||
input_pos_array[0] = pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
for (size_t i = 1; i < SPACETODEPTH_BUFFER_DIMENSION; i++) {
|
||||
temp_stride /= input_shape[i];
|
||||
input_pos_array[i] = temp_pos / temp_stride;
|
||||
temp_pos %= temp_stride;
|
||||
}
|
||||
temp_stride /= ic;
|
||||
input_pos_array[1] = temp_pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
output_pos_array[0] = input_pos_array[0];
|
||||
output_pos_array[1] = input_pos_array[1] * r * r + r * (input_pos_array[2] % r) + input_pos_array[3] % r;
|
||||
output_pos_array[2] = input_pos_array[2] / r;
|
||||
output_pos_array[3] = input_pos_array[3] / r;
|
||||
temp_stride /= ih;
|
||||
input_pos_array[2] = temp_pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
for (size_t i = 0; i < 3; ++i) {
|
||||
output_pos += output_pos_array[i];
|
||||
output_pos *= output_shape[i + 1];
|
||||
}
|
||||
output_pos += output_pos_array[3];
|
||||
temp_stride /= iw;
|
||||
input_pos_array[3] = temp_pos / temp_stride;
|
||||
|
||||
output_pos += input_pos_array[0];
|
||||
output_pos = (output_pos * oc) +
|
||||
(input_pos_array[1] +
|
||||
(r * (input_pos_array[2] % r) + input_pos_array[3] % r) * ic);
|
||||
output_pos = (output_pos * oh) + (input_pos_array[2] / r);
|
||||
output_pos = (output_pos * ow) + (input_pos_array[3] / r);
|
||||
|
||||
output[output_pos] = input[pos];
|
||||
output_pos = 0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalSpaceToDepth(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
|
||||
const size_t r, T *output, cudaStream_t cuda_stream) {
|
||||
SpaceToDepth<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, input_shape, output_shape, r, output);
|
||||
void CalSpaceToDepth(const size_t size, const T *input, const size_t in,
|
||||
const size_t ic, const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc, const size_t oh,
|
||||
const size_t ow, const size_t r, T *output,
|
||||
cudaStream_t cuda_stream) {
|
||||
SpaceToDepth<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
|
||||
size, input, in, ic, ih, iw, on, oc, oh, ow, r, output);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalSpaceToDepth<float>(const size_t size, const float *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, float *output,
|
||||
template void CalSpaceToDepth<float>(const size_t size, const float *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, float *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<half>(const size_t size, const half *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, half *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<int>(const size_t size, const int *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, int *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<int64_t>(const size_t size, const int64_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, int64_t *output,
|
||||
template void CalSpaceToDepth<half>(const size_t size, const half *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, half *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<int>(const size_t size, const int *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, int *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<int64_t>(const size_t size, const int64_t *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, int64_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<int16_t>(const size_t size, const int16_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, int16_t *output,
|
||||
template void CalSpaceToDepth<int16_t>(const size_t size, const int16_t *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, int16_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<int8_t>(const size_t size, const int8_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, int8_t *output,
|
||||
template void CalSpaceToDepth<int8_t>(const size_t size, const int8_t *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, int8_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<uint8_t>(const size_t size, const uint8_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, uint8_t *output,
|
||||
template void CalSpaceToDepth<uint8_t>(const size_t size, const uint8_t *input,
|
||||
const size_t in, const size_t ic,
|
||||
const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow,
|
||||
const size_t r, uint8_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<uint16_t>(const size_t size, const uint16_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, uint16_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<uint32_t>(const size_t size, const uint32_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, uint32_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSpaceToDepth<uint64_t>(const size_t size, const uint64_t *input, const size_t *input_shape,
|
||||
const size_t *output_shape, const size_t r, uint64_t *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void
|
||||
CalSpaceToDepth<uint16_t>(const size_t size, const uint16_t *input,
|
||||
const size_t in, const size_t ic, const size_t ih,
|
||||
const size_t iw, const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow, const size_t r,
|
||||
uint16_t *output, cudaStream_t cuda_stream);
|
||||
template void
|
||||
CalSpaceToDepth<uint32_t>(const size_t size, const uint32_t *input,
|
||||
const size_t in, const size_t ic, const size_t ih,
|
||||
const size_t iw, const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow, const size_t r,
|
||||
uint32_t *output, cudaStream_t cuda_stream);
|
||||
template void
|
||||
CalSpaceToDepth<uint64_t>(const size_t size, const uint64_t *input,
|
||||
const size_t in, const size_t ic, const size_t ih,
|
||||
const size_t iw, const size_t on, const size_t oc,
|
||||
const size_t oh, const size_t ow, const size_t r,
|
||||
uint64_t *output, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -19,7 +19,10 @@
|
|||
|
||||
#define SPACETODEPTH_BUFFER_DIMENSION 4
|
||||
template <typename T>
|
||||
void CalSpaceToDepth(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
|
||||
const size_t r, T *output, cudaStream_t cuda_stream);
|
||||
void CalSpaceToDepth(const size_t size, const T *input, const size_t in,
|
||||
const size_t ic, const size_t ih, const size_t iw,
|
||||
const size_t on, const size_t oc, const size_t oh,
|
||||
const size_t ow, const size_t r, T *output,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SPACETODEPTH_H_
|
||||
|
|
|
@ -22,55 +22,51 @@ from mindspore.common.api import ms_function
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
def DepthToSpaceNumpy(arr, block_size):
|
||||
'''
|
||||
DepthToSpace ops use numpy
|
||||
'''
|
||||
tmpshape = arr.shape
|
||||
newshape = []
|
||||
newshape.append(tmpshape[0])
|
||||
newshape.append(tmpshape[1]//block_size//block_size)
|
||||
newshape.append(tmpshape[2]*block_size)
|
||||
newshape.append(tmpshape[3]*block_size)
|
||||
output = arr.reshape(newshape[0], newshape[1], block_size, block_size, tmpshape[2], tmpshape[3])
|
||||
output = np.transpose(output, (0, 1, 4, 2, 5, 3))
|
||||
output = output.reshape(newshape)
|
||||
return output
|
||||
|
||||
class DepthToSpaceNet(nn.Cell):
|
||||
def __init__(self, nptype, block_size=2, input_shape=(1, 4, 3, 3)):
|
||||
def __init__(self, nptype, block_size=2, input_shape=(1, 12, 1, 1)):
|
||||
super(DepthToSpaceNet, self).__init__()
|
||||
self.DepthToSpace = P.DepthToSpace(2)
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
self.data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
self.x = Parameter(initializer(Tensor(self.data_np), input_shape), name='x')
|
||||
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
return self.DepthToSpace(self.x)
|
||||
y1 = self.DepthToSpace(self.x1)
|
||||
return y1
|
||||
|
||||
|
||||
def DepthToSpace(nptype, block_size=2, input_shape=(1, 4, 3, 3)):
|
||||
def DepthToSpace(nptype, block_size=2, input_shape=(1, 12, 1, 1)):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
expect = DepthToSpaceNumpy(expect, block_size)
|
||||
expect = np.array([[[[0, 3],
|
||||
[6, 9]],
|
||||
[[1, 4],
|
||||
[7, 10]],
|
||||
[[2, 5],
|
||||
[8, 11]]]]).astype(nptype)
|
||||
|
||||
dts = DepthToSpaceNet(nptype, block_size, input_shape)
|
||||
output = dts()
|
||||
print(output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
def DepthToSpace_pynative(nptype, block_size=2, input_shape=(1, 4, 3, 3)):
|
||||
def DepthToSpace_pynative(nptype, block_size=2, input_shape=(1, 12, 1, 1)):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
expect = DepthToSpaceNumpy(expect, block_size)
|
||||
expect = np.array([[[[0, 3],
|
||||
[6, 9]],
|
||||
[[1, 4],
|
||||
[7, 10]],
|
||||
[[2, 5],
|
||||
[8, 11]]]]).astype(nptype)
|
||||
|
||||
dts = P.DepthToSpace(2)
|
||||
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
|
||||
|
|
|
@ -22,70 +22,45 @@ from mindspore.common.api import ms_function
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
def DepthToSpaceNumpy(arr, block_size):
|
||||
'''
|
||||
DepthToSpace ops use numpy
|
||||
DepthToSpace ops is reverse ops to SpaceToDepth ops
|
||||
therefore DepthToSpace's output can be SpaceToDepth's input
|
||||
'''
|
||||
tmpshape = arr.shape
|
||||
newshape = []
|
||||
newshape.append(tmpshape[0])
|
||||
newshape.append(tmpshape[1]//block_size//block_size)
|
||||
newshape.append(tmpshape[2]*block_size)
|
||||
newshape.append(tmpshape[3]*block_size)
|
||||
output = arr.reshape(newshape[0], newshape[1], block_size, block_size, tmpshape[2], tmpshape[3])
|
||||
output = np.transpose(output, (0, 1, 4, 2, 5, 3))
|
||||
output = output.reshape(newshape)
|
||||
return output
|
||||
|
||||
class SpaceToDepthNet(nn.Cell):
|
||||
def __init__(self, nptype, block_size=2, input_shape=(1, 4, 3, 3)):
|
||||
def __init__(self, nptype):
|
||||
super(SpaceToDepthNet, self).__init__()
|
||||
self.SpaceToDepth = P.SpaceToDepth(block_size)
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
self.SpaceToDepth = P.SpaceToDepth(2)
|
||||
|
||||
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)# data_np shape is (N,C,H,W)
|
||||
data_np = DepthToSpaceNumpy(data_np, block_size)#now data_np shape is (N,C/(block_size*block_size),H*block_size,W*block_size)
|
||||
data_np = np.array([[[[0, 3],
|
||||
[6, 9]],
|
||||
[[1, 4],
|
||||
[7, 10]],
|
||||
[[2, 5],
|
||||
[8, 11]]]]).astype(nptype)
|
||||
self.data_np = data_np
|
||||
new_shape = []
|
||||
new_shape.append(input_shape[0])
|
||||
new_shape.append(input_shape[1]//(block_size*block_size))
|
||||
new_shape.append(input_shape[2]*block_size)
|
||||
new_shape.append(input_shape[3]*block_size)
|
||||
self.x = Parameter(initializer(Tensor(self.data_np), new_shape), name='x')
|
||||
self.x = Parameter(initializer(Tensor(self.data_np), (1, 3, 2, 2)), name='x')
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
return self.SpaceToDepth(self.x)
|
||||
|
||||
|
||||
def SpaceToDepth(nptype, block_size=2, input_shape=(1, 4, 3, 3)):
|
||||
def SpaceToDepth(nptype):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
|
||||
expect = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
|
||||
std = SpaceToDepthNet(nptype, block_size, input_shape)
|
||||
expect = np.arange(12).reshape((1, 12, 1, 1)).astype(nptype)
|
||||
std = SpaceToDepthNet(nptype)
|
||||
output = std()
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
def SpaceToDepth_pynative(nptype, block_size=2, input_shape=(1, 4, 3, 3)):
|
||||
def SpaceToDepth_pynative(nptype):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
arrinput = DepthToSpaceNumpy(expect, block_size)
|
||||
|
||||
std = P.SpaceToDepth(block_size)
|
||||
arrinput = Tensor(arrinput)
|
||||
output = std(arrinput)
|
||||
expect = np.arange(12).reshape((1, 12, 1, 1)).astype(nptype)
|
||||
|
||||
std = P.SpaceToDepth(2)
|
||||
data_np = np.array([[[[0, 3],
|
||||
[6, 9]],
|
||||
[[1, 4],
|
||||
[7, 10]],
|
||||
[[2, 5],
|
||||
[8, 11]]]]).astype(nptype)
|
||||
tensor_input = Tensor(data_np)
|
||||
output = std(tensor_input)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
|
@ -208,3 +183,6 @@ def test_spacetodepth_pynative_uint32():
|
|||
@pytest.mark.env_onecard
|
||||
def test_spacetodepth_pynative_uint64():
|
||||
SpaceToDepth_pynative(np.uint64)
|
||||
|
||||
test_spacetodepth_graph_float32()
|
||||
test_spacetodepth_pynative_int32()
|
||||
|
|
Loading…
Reference in New Issue