!15607 bugfix-issue:DepthToSpace SyncHostToDevice failed and the result is incorrect.

From: @kanghui0204
Reviewed-by: @liangchenghui,@tom__chen
Signed-off-by: @liangchenghui
This commit is contained in:
mindspore-ci-bot 2021-04-26 23:20:33 +08:00 committed by Gitee
commit ef535c360a
8 changed files with 297 additions and 232 deletions

View File

@ -41,25 +41,11 @@ class DepthToSpaceFwdKernel : public GpuKernel {
T *input = GetDeviceAddress<T>(inputs, 0);
T *output = GetDeviceAddress<T>(outputs, 0);
// get device buffer shape ptr
size_t *input_shape = GetDeviceAddress<size_t>(workspace, 0);
size_t *output_shape = GetDeviceAddress<size_t>(workspace, 1);
// buffer shape memcpy from host to device
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(input_shape, &input_shape_[0], workspace_size1_, cudaMemcpyHostToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync input_shape failed");
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(output_shape, &output_shape_[0], workspace_size2_,
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync input_shape failed");
// get input size
size_t size = input_size_ / sizeof(T);
// call cuda kernel
CalDepthToSpace(size, input, input_shape, output_shape, block_size_, output,
CalDepthToSpace(size, input, in_, ic_, ih_, iw_, on_, oc_, oh_, ow_, block_size_, output,
reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
@ -89,14 +75,20 @@ class DepthToSpaceFwdKernel : public GpuKernel {
input_size_ = 1;
for (size_t i = 0; i < shape_size_; i++) {
input_size_ *= input_shape[i];
input_shape_.push_back(input_shape[i]);
}
input_size_ *= sizeof(T);
output_size_ = input_size_;
output_shape_.push_back(input_shape[0]);
output_shape_.push_back(input_shape[1] / block_size_ / block_size_);
output_shape_.push_back(input_shape[2] * block_size_);
output_shape_.push_back(input_shape[3] * block_size_);
in_ = input_shape[0];
ic_ = input_shape[1];
ih_ = input_shape[2];
iw_ = input_shape[3];
on_ = in_;
oc_ = ic_ / block_size_ / block_size_;
oh_ = ih_ * block_size_;
ow_ = iw_ * block_size_;
// Private members Initialize
InitSizeLists();
return true;
@ -107,11 +99,15 @@ class DepthToSpaceFwdKernel : public GpuKernel {
input_size_ = 0;
output_size_ = 0;
block_size_ = 0;
workspace_size1_ = 0;
workspace_size2_ = 0;
in_ = 0;
ic_ = 0;
ih_ = 0;
iw_ = 0;
on_ = 0;
oc_ = 0;
oh_ = 0;
ow_ = 0;
input_shape_.clear();
output_shape_.clear();
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
@ -121,16 +117,10 @@ class DepthToSpaceFwdKernel : public GpuKernel {
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
output_size_list_.push_back(output_size_);
workspace_size1_ = shape_size_ * sizeof(size_t);
workspace_size2_ = shape_size_ * sizeof(size_t);
workspace_size_list_.push_back(workspace_size1_);
workspace_size_list_.push_back(workspace_size2_);
return;
}
private:
std::vector<size_t> input_shape_;
std::vector<size_t> output_shape_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
@ -138,8 +128,14 @@ class DepthToSpaceFwdKernel : public GpuKernel {
size_t input_size_;
size_t output_size_;
size_t block_size_;
size_t workspace_size1_;
size_t workspace_size2_;
size_t in_;
size_t ic_;
size_t ih_;
size_t iw_;
size_t on_;
size_t oc_;
size_t oh_;
size_t ow_;
};
} // namespace kernel
} // namespace mindspore

View File

@ -41,25 +41,11 @@ class SpaceToDepthFwdKernel : public GpuKernel {
T *input = GetDeviceAddress<T>(inputs, 0);
T *output = GetDeviceAddress<T>(outputs, 0);
// get device buffer shape ptr
size_t *input_shape = GetDeviceAddress<size_t>(workspace, 0);
size_t *output_shape = GetDeviceAddress<size_t>(workspace, 1);
// buffer shape memcpy from host to device
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(input_shape, &input_shape_[0], workspace_size1_, cudaMemcpyHostToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync input_shape failed");
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(output_shape, &output_shape_[0], workspace_size2_,
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync input_shape failed");
// get input size
size_t size = input_size_ / sizeof(T);
// call cuda kernel
CalSpaceToDepth(size, input, input_shape, output_shape, block_size_, output,
CalSpaceToDepth(size, input, in_, ic_, ih_, iw_, on_, oc_, oh_, ow_, block_size_, output,
reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
@ -89,14 +75,19 @@ class SpaceToDepthFwdKernel : public GpuKernel {
input_size_ = 1;
for (size_t i = 0; i < shape_size_; i++) {
input_size_ *= input_shape[i];
input_shape_.push_back(input_shape[i]);
}
input_size_ *= sizeof(T);
output_size_ = input_size_;
output_shape_.push_back(input_shape[0]);
output_shape_.push_back(input_shape[1] * block_size_ * block_size_);
output_shape_.push_back(input_shape[2] / block_size_);
output_shape_.push_back(input_shape[3] / block_size_);
in_ = input_shape[0];
ic_ = input_shape[1];
ih_ = input_shape[2];
iw_ = input_shape[3];
on_ = in_;
oc_ = ic_ * block_size_ * block_size_;
oh_ = ih_ / block_size_;
ow_ = iw_ / block_size_;
// Private members Initialize
InitSizeLists();
return true;
@ -107,11 +98,15 @@ class SpaceToDepthFwdKernel : public GpuKernel {
input_size_ = 0;
output_size_ = 0;
block_size_ = 0;
workspace_size1_ = 0;
workspace_size2_ = 0;
in_ = 0;
ic_ = 0;
ih_ = 0;
iw_ = 0;
on_ = 0;
oc_ = 0;
oh_ = 0;
ow_ = 0;
input_shape_.clear();
output_shape_.clear();
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
@ -121,16 +116,10 @@ class SpaceToDepthFwdKernel : public GpuKernel {
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
output_size_list_.push_back(output_size_);
workspace_size1_ = shape_size_ * sizeof(size_t);
workspace_size2_ = shape_size_ * sizeof(size_t);
workspace_size_list_.push_back(workspace_size1_);
workspace_size_list_.push_back(workspace_size2_);
return;
}
private:
std::vector<size_t> input_shape_;
std::vector<size_t> output_shape_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
@ -138,8 +127,14 @@ class SpaceToDepthFwdKernel : public GpuKernel {
size_t input_size_;
size_t output_size_;
size_t block_size_;
size_t workspace_size1_;
size_t workspace_size2_;
size_t in_;
size_t ic_;
size_t ih_;
size_t iw_;
size_t on_;
size_t oc_;
size_t oh_;
size_t ow_;
};
} // namespace kernel
} // namespace mindspore

View File

@ -13,79 +13,126 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda_runtime.h>
#include "depthtospace_impl.cuh"
#include "runtime/device/gpu/cuda_common.h"
template <typename T>
__global__ void DepthToSpace(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
const size_t r, T *output) {
__global__ void DepthToSpace(const size_t size, const T *input, const size_t in,
const size_t ic, const size_t ih, const size_t iw,
const size_t on, const size_t oc, const size_t oh,
const size_t ow, const size_t r, T *output) {
size_t temp_stride = 0;
size_t temp_pos = 0;
size_t input_pos = 0;
size_t input_pos_array[DEPTHTOSPACE_BUFFER_DIMENSION];
size_t output_pos_array[DEPTHTOSPACE_BUFFER_DIMENSION];
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
temp_stride = output_shape[1] * output_shape[2] * output_shape[3];
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size;
pos += blockDim.x * gridDim.x) {
temp_stride = oc * oh * ow;
output_pos_array[0] = pos / temp_stride;
temp_pos = pos % temp_stride;
for (size_t i = 1; i < DEPTHTOSPACE_BUFFER_DIMENSION; i++) {
temp_stride /= output_shape[i];
output_pos_array[i] = temp_pos / temp_stride;
temp_pos %= temp_stride;
}
temp_stride /= oc;
output_pos_array[1] = temp_pos / temp_stride;
temp_pos = pos % temp_stride;
input_pos_array[0] = output_pos_array[0];
input_pos_array[1] = output_pos_array[1] * r * r + r * (output_pos_array[2] % r) + output_pos_array[3] % r;
input_pos_array[2] = output_pos_array[2] / r;
input_pos_array[3] = output_pos_array[3] / r;
temp_stride /= oh;
output_pos_array[2] = temp_pos / temp_stride;
temp_pos = pos % temp_stride;
for (size_t i = 0; i < 3; ++i) {
input_pos += input_pos_array[i];
input_pos *= input_shape[i + 1];
}
input_pos += input_pos_array[3];
temp_stride /= ow;
output_pos_array[3] = temp_pos / temp_stride;
input_pos += output_pos_array[0];
input_pos =
(input_pos * ic) +
(output_pos_array[1] +
(r * (output_pos_array[2] % r) + output_pos_array[3] % r) * oc);
input_pos = (input_pos * ih) + (output_pos_array[2] / r);
input_pos = (input_pos * iw) + (output_pos_array[3] / r);
output[pos] = input[input_pos];
input_pos = 0;
}
return;
}
template <typename T>
void CalDepthToSpace(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
const size_t r, T *output, cudaStream_t cuda_stream) {
DepthToSpace<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, input_shape, output_shape, r, output);
void CalDepthToSpace(const size_t size, const T *input, const size_t in,
const size_t ic, const size_t ih, const size_t iw,
const size_t on, const size_t oc, const size_t oh,
const size_t ow, const size_t r, T *output,
cudaStream_t cuda_stream) {
DepthToSpace<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
size, input, in, ic, ih, iw, on, oc, oh, ow, r, output);
return;
}
template void CalDepthToSpace<float>(const size_t size, const float *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, float *output,
template void CalDepthToSpace<float>(const size_t size, const float *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, float *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<half>(const size_t size, const half *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, half *output, cudaStream_t cuda_stream);
template void CalDepthToSpace<int>(const size_t size, const int *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, int *output, cudaStream_t cuda_stream);
template void CalDepthToSpace<int64_t>(const size_t size, const int64_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, int64_t *output,
template void CalDepthToSpace<half>(const size_t size, const half *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, half *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<int>(const size_t size, const int *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, int *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<int64_t>(const size_t size, const int64_t *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, int64_t *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<int16_t>(const size_t size, const int16_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, int16_t *output,
template void CalDepthToSpace<int16_t>(const size_t size, const int16_t *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, int16_t *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<int8_t>(const size_t size, const int8_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, int8_t *output,
template void CalDepthToSpace<int8_t>(const size_t size, const int8_t *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, int8_t *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<uint8_t>(const size_t size, const uint8_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, uint8_t *output,
template void CalDepthToSpace<uint8_t>(const size_t size, const uint8_t *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, uint8_t *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<uint16_t>(const size_t size, const uint16_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, uint16_t *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<uint32_t>(const size_t size, const uint32_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, uint32_t *output,
cudaStream_t cuda_stream);
template void CalDepthToSpace<uint64_t>(const size_t size, const uint64_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, uint64_t *output,
cudaStream_t cuda_stream);
template void
CalDepthToSpace<uint16_t>(const size_t size, const uint16_t *input,
const size_t in, const size_t ic, const size_t ih,
const size_t iw, const size_t on, const size_t oc,
const size_t oh, const size_t ow, const size_t r,
uint16_t *output, cudaStream_t cuda_stream);
template void
CalDepthToSpace<uint32_t>(const size_t size, const uint32_t *input,
const size_t in, const size_t ic, const size_t ih,
const size_t iw, const size_t on, const size_t oc,
const size_t oh, const size_t ow, const size_t r,
uint32_t *output, cudaStream_t cuda_stream);
template void
CalDepthToSpace<uint64_t>(const size_t size, const uint64_t *input,
const size_t in, const size_t ic, const size_t ih,
const size_t iw, const size_t on, const size_t oc,
const size_t oh, const size_t ow, const size_t r,
uint64_t *output, cudaStream_t cuda_stream);

View File

@ -19,7 +19,10 @@
#define DEPTHTOSPACE_BUFFER_DIMENSION 4
template <typename T>
void CalDepthToSpace(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
const size_t r, T *output, cudaStream_t cuda_stream);
void CalDepthToSpace(const size_t size, const T *input, const size_t in,
const size_t ic, const size_t ih, const size_t iw,
const size_t on, const size_t oc, const size_t oh,
const size_t ow, const size_t r, T *output,
cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_DEPTHTOSPACE_H_

View File

@ -19,73 +19,120 @@
#include "runtime/device/gpu/cuda_common.h"
template <typename T>
__global__ void SpaceToDepth(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
const size_t r, T *output) {
__global__ void SpaceToDepth(const size_t size, const T *input, const size_t in,
const size_t ic, const size_t ih, const size_t iw,
const size_t on, const size_t oc, const size_t oh,
const size_t ow, const size_t r, T *output) {
size_t temp_stride = 0;
size_t temp_pos = 0;
size_t output_pos = 0;
size_t input_pos_array[SPACETODEPTH_BUFFER_DIMENSION];
size_t output_pos_array[SPACETODEPTH_BUFFER_DIMENSION];
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
temp_stride = input_shape[1] * input_shape[2] * input_shape[3];
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size;
pos += blockDim.x * gridDim.x) {
temp_stride = ic * ih * iw;
input_pos_array[0] = pos / temp_stride;
temp_pos = pos % temp_stride;
for (size_t i = 1; i < SPACETODEPTH_BUFFER_DIMENSION; i++) {
temp_stride /= input_shape[i];
input_pos_array[i] = temp_pos / temp_stride;
temp_pos %= temp_stride;
}
temp_stride /= ic;
input_pos_array[1] = temp_pos / temp_stride;
temp_pos = pos % temp_stride;
output_pos_array[0] = input_pos_array[0];
output_pos_array[1] = input_pos_array[1] * r * r + r * (input_pos_array[2] % r) + input_pos_array[3] % r;
output_pos_array[2] = input_pos_array[2] / r;
output_pos_array[3] = input_pos_array[3] / r;
temp_stride /= ih;
input_pos_array[2] = temp_pos / temp_stride;
temp_pos = pos % temp_stride;
for (size_t i = 0; i < 3; ++i) {
output_pos += output_pos_array[i];
output_pos *= output_shape[i + 1];
}
output_pos += output_pos_array[3];
temp_stride /= iw;
input_pos_array[3] = temp_pos / temp_stride;
output_pos += input_pos_array[0];
output_pos = (output_pos * oc) +
(input_pos_array[1] +
(r * (input_pos_array[2] % r) + input_pos_array[3] % r) * ic);
output_pos = (output_pos * oh) + (input_pos_array[2] / r);
output_pos = (output_pos * ow) + (input_pos_array[3] / r);
output[output_pos] = input[pos];
output_pos = 0;
}
return;
}
template <typename T>
void CalSpaceToDepth(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
const size_t r, T *output, cudaStream_t cuda_stream) {
SpaceToDepth<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, input_shape, output_shape, r, output);
void CalSpaceToDepth(const size_t size, const T *input, const size_t in,
const size_t ic, const size_t ih, const size_t iw,
const size_t on, const size_t oc, const size_t oh,
const size_t ow, const size_t r, T *output,
cudaStream_t cuda_stream) {
SpaceToDepth<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
size, input, in, ic, ih, iw, on, oc, oh, ow, r, output);
return;
}
template void CalSpaceToDepth<float>(const size_t size, const float *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, float *output,
template void CalSpaceToDepth<float>(const size_t size, const float *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, float *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<half>(const size_t size, const half *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, half *output, cudaStream_t cuda_stream);
template void CalSpaceToDepth<int>(const size_t size, const int *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, int *output, cudaStream_t cuda_stream);
template void CalSpaceToDepth<int64_t>(const size_t size, const int64_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, int64_t *output,
template void CalSpaceToDepth<half>(const size_t size, const half *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, half *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<int>(const size_t size, const int *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, int *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<int64_t>(const size_t size, const int64_t *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, int64_t *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<int16_t>(const size_t size, const int16_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, int16_t *output,
template void CalSpaceToDepth<int16_t>(const size_t size, const int16_t *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, int16_t *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<int8_t>(const size_t size, const int8_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, int8_t *output,
template void CalSpaceToDepth<int8_t>(const size_t size, const int8_t *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, int8_t *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<uint8_t>(const size_t size, const uint8_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, uint8_t *output,
template void CalSpaceToDepth<uint8_t>(const size_t size, const uint8_t *input,
const size_t in, const size_t ic,
const size_t ih, const size_t iw,
const size_t on, const size_t oc,
const size_t oh, const size_t ow,
const size_t r, uint8_t *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<uint16_t>(const size_t size, const uint16_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, uint16_t *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<uint32_t>(const size_t size, const uint32_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, uint32_t *output,
cudaStream_t cuda_stream);
template void CalSpaceToDepth<uint64_t>(const size_t size, const uint64_t *input, const size_t *input_shape,
const size_t *output_shape, const size_t r, uint64_t *output,
cudaStream_t cuda_stream);
template void
CalSpaceToDepth<uint16_t>(const size_t size, const uint16_t *input,
const size_t in, const size_t ic, const size_t ih,
const size_t iw, const size_t on, const size_t oc,
const size_t oh, const size_t ow, const size_t r,
uint16_t *output, cudaStream_t cuda_stream);
template void
CalSpaceToDepth<uint32_t>(const size_t size, const uint32_t *input,
const size_t in, const size_t ic, const size_t ih,
const size_t iw, const size_t on, const size_t oc,
const size_t oh, const size_t ow, const size_t r,
uint32_t *output, cudaStream_t cuda_stream);
template void
CalSpaceToDepth<uint64_t>(const size_t size, const uint64_t *input,
const size_t in, const size_t ic, const size_t ih,
const size_t iw, const size_t on, const size_t oc,
const size_t oh, const size_t ow, const size_t r,
uint64_t *output, cudaStream_t cuda_stream);

View File

@ -19,7 +19,10 @@
#define SPACETODEPTH_BUFFER_DIMENSION 4
template <typename T>
void CalSpaceToDepth(const size_t size, const T *input, const size_t *input_shape, const size_t *output_shape,
const size_t r, T *output, cudaStream_t cuda_stream);
void CalSpaceToDepth(const size_t size, const T *input, const size_t in,
const size_t ic, const size_t ih, const size_t iw,
const size_t on, const size_t oc, const size_t oh,
const size_t ow, const size_t r, T *output,
cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SPACETODEPTH_H_

View File

@ -22,55 +22,51 @@ from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
def DepthToSpaceNumpy(arr, block_size):
'''
DepthToSpace ops use numpy
'''
tmpshape = arr.shape
newshape = []
newshape.append(tmpshape[0])
newshape.append(tmpshape[1]//block_size//block_size)
newshape.append(tmpshape[2]*block_size)
newshape.append(tmpshape[3]*block_size)
output = arr.reshape(newshape[0], newshape[1], block_size, block_size, tmpshape[2], tmpshape[3])
output = np.transpose(output, (0, 1, 4, 2, 5, 3))
output = output.reshape(newshape)
return output
class DepthToSpaceNet(nn.Cell):
def __init__(self, nptype, block_size=2, input_shape=(1, 4, 3, 3)):
def __init__(self, nptype, block_size=2, input_shape=(1, 12, 1, 1)):
super(DepthToSpaceNet, self).__init__()
self.DepthToSpace = P.DepthToSpace(2)
input_size = 1
for i in input_shape:
input_size = input_size*i
self.data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
self.x = Parameter(initializer(Tensor(self.data_np), input_shape), name='x')
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
@ms_function
def construct(self):
return self.DepthToSpace(self.x)
y1 = self.DepthToSpace(self.x1)
return y1
def DepthToSpace(nptype, block_size=2, input_shape=(1, 4, 3, 3)):
def DepthToSpace(nptype, block_size=2, input_shape=(1, 12, 1, 1)):
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
input_size = 1
for i in input_shape:
input_size = input_size*i
expect = np.arange(input_size).reshape(input_shape).astype(nptype)
expect = DepthToSpaceNumpy(expect, block_size)
expect = np.array([[[[0, 3],
[6, 9]],
[[1, 4],
[7, 10]],
[[2, 5],
[8, 11]]]]).astype(nptype)
dts = DepthToSpaceNet(nptype, block_size, input_shape)
output = dts()
print(output)
assert (output.asnumpy() == expect).all()
def DepthToSpace_pynative(nptype, block_size=2, input_shape=(1, 4, 3, 3)):
def DepthToSpace_pynative(nptype, block_size=2, input_shape=(1, 12, 1, 1)):
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
input_size = 1
for i in input_shape:
input_size = input_size*i
expect = np.arange(input_size).reshape(input_shape).astype(nptype)
expect = DepthToSpaceNumpy(expect, block_size)
expect = np.array([[[[0, 3],
[6, 9]],
[[1, 4],
[7, 10]],
[[2, 5],
[8, 11]]]]).astype(nptype)
dts = P.DepthToSpace(2)
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))

View File

@ -22,70 +22,45 @@ from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
def DepthToSpaceNumpy(arr, block_size):
'''
DepthToSpace ops use numpy
DepthToSpace ops is reverse ops to SpaceToDepth ops
therefore DepthToSpace's output can be SpaceToDepth's input
'''
tmpshape = arr.shape
newshape = []
newshape.append(tmpshape[0])
newshape.append(tmpshape[1]//block_size//block_size)
newshape.append(tmpshape[2]*block_size)
newshape.append(tmpshape[3]*block_size)
output = arr.reshape(newshape[0], newshape[1], block_size, block_size, tmpshape[2], tmpshape[3])
output = np.transpose(output, (0, 1, 4, 2, 5, 3))
output = output.reshape(newshape)
return output
class SpaceToDepthNet(nn.Cell):
def __init__(self, nptype, block_size=2, input_shape=(1, 4, 3, 3)):
def __init__(self, nptype):
super(SpaceToDepthNet, self).__init__()
self.SpaceToDepth = P.SpaceToDepth(block_size)
input_size = 1
for i in input_shape:
input_size = input_size*i
self.SpaceToDepth = P.SpaceToDepth(2)
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)# data_np shape is (N,C,H,W)
data_np = DepthToSpaceNumpy(data_np, block_size)#now data_np shape is (N,C/(block_size*block_size),H*block_size,W*block_size)
data_np = np.array([[[[0, 3],
[6, 9]],
[[1, 4],
[7, 10]],
[[2, 5],
[8, 11]]]]).astype(nptype)
self.data_np = data_np
new_shape = []
new_shape.append(input_shape[0])
new_shape.append(input_shape[1]//(block_size*block_size))
new_shape.append(input_shape[2]*block_size)
new_shape.append(input_shape[3]*block_size)
self.x = Parameter(initializer(Tensor(self.data_np), new_shape), name='x')
self.x = Parameter(initializer(Tensor(self.data_np), (1, 3, 2, 2)), name='x')
@ms_function
def construct(self):
return self.SpaceToDepth(self.x)
def SpaceToDepth(nptype, block_size=2, input_shape=(1, 4, 3, 3)):
def SpaceToDepth(nptype):
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
input_size = 1
for i in input_shape:
input_size = input_size*i
expect = np.arange(input_size).reshape(input_shape).astype(nptype)
std = SpaceToDepthNet(nptype, block_size, input_shape)
expect = np.arange(12).reshape((1, 12, 1, 1)).astype(nptype)
std = SpaceToDepthNet(nptype)
output = std()
assert (output.asnumpy() == expect).all()
def SpaceToDepth_pynative(nptype, block_size=2, input_shape=(1, 4, 3, 3)):
def SpaceToDepth_pynative(nptype):
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
input_size = 1
for i in input_shape:
input_size = input_size*i
expect = np.arange(input_size).reshape(input_shape).astype(nptype)
arrinput = DepthToSpaceNumpy(expect, block_size)
std = P.SpaceToDepth(block_size)
arrinput = Tensor(arrinput)
output = std(arrinput)
expect = np.arange(12).reshape((1, 12, 1, 1)).astype(nptype)
std = P.SpaceToDepth(2)
data_np = np.array([[[[0, 3],
[6, 9]],
[[1, 4],
[7, 10]],
[[2, 5],
[8, 11]]]]).astype(nptype)
tensor_input = Tensor(data_np)
output = std(tensor_input)
assert (output.asnumpy() == expect).all()
@ -208,3 +183,6 @@ def test_spacetodepth_pynative_uint32():
@pytest.mark.env_onecard
def test_spacetodepth_pynative_uint64():
SpaceToDepth_pynative(np.uint64)
test_spacetodepth_graph_float32()
test_spacetodepth_pynative_int32()