forked from mindspore-Ecosystem/mindspore
tprr code optim
This commit is contained in:
parent
5447d85f87
commit
ee43d3f21b
|
@ -66,6 +66,7 @@ After installing MindSpore via the official website and Dataset is correctly gen
|
|||
|
||||
```python
|
||||
# run evaluation example with HotPotQA dev dataset
|
||||
pip install transformers
|
||||
sh run_eval_ascend.sh
|
||||
sh run_eval_ascend_reranker_reader.sh
|
||||
```
|
||||
|
@ -85,22 +86,20 @@ After installing MindSpore via the official website and Dataset is correctly gen
|
|||
├─src
|
||||
| ├─build_reranker_data.py # build data for re-ranker from result of retriever
|
||||
| ├─config.py # Evaluation configurations for retriever
|
||||
| ├─converted_bert.py # Bert model for tprr
|
||||
| ├─hotpot_evaluate_v1.py # Hotpotqa evaluation script
|
||||
| ├─onehop.py # Onehop model of retriever
|
||||
| ├─onehop_bert.py # Onehop bert model of retriever
|
||||
| ├─process_data.py # Data preprocessing for retriever
|
||||
| ├─reader.py # Reader model
|
||||
| ├─reader_albert_xxlarge.py # Albert-xxlarge module of reader model
|
||||
| ├─albert.py # Albert-xxlarge model
|
||||
| ├─reader_downstream.py # Downstream module of reader model
|
||||
| ├─reader_eval.py # Reader evaluation script
|
||||
| ├─rerank_albert_xxlarge.py # Albert-xxlarge module of re-ranker model
|
||||
| ├─rerank_and_reader_data_generator.py # Data generator for re-ranker and reader
|
||||
| ├─rerank_and_reader_utils.py # Utils for re-ranker and reader
|
||||
| ├─rerank_downstream.py # Downstream module of re-ranker model
|
||||
| ├─reranker.py # Re-ranker model
|
||||
| ├─reranker_eval.py # Re-ranker evaluation script
|
||||
| ├─twohop.py # Twohop model of retriever
|
||||
| ├─twohop_bert.py # Twohop bert model of retriever
|
||||
| └─utils.py # Utils for retriever
|
||||
|
|
||||
├─retriever_eval.py # Evaluation net for retriever
|
||||
|
|
|
@ -14,6 +14,8 @@
|
|||
# ============================================================================
|
||||
"""main file"""
|
||||
|
||||
import os
|
||||
from time import time
|
||||
from mindspore import context
|
||||
from src.rerank_and_reader_utils import get_parse, cal_reranker_metrics, select_reader_dev_data
|
||||
from src.reranker_eval import rerank
|
||||
|
@ -27,6 +29,13 @@ def rerank_and_retriever_eval():
|
|||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
parser = get_parse()
|
||||
args = parser.parse_args()
|
||||
args.dev_gold_path = os.path.join(args.data_path, args.dev_gold_file)
|
||||
args.wiki_db_path = os.path.join(args.data_path, args.wiki_db_file)
|
||||
args.albert_model_path = os.path.join(args.ckpt_path, args.albert_model)
|
||||
args.rerank_encoder_ck_path = os.path.join(args.ckpt_path, args.rerank_encoder_ck_file)
|
||||
args.rerank_downstream_ck_path = os.path.join(args.ckpt_path, args.rerank_downstream_ck_file)
|
||||
args.reader_encoder_ck_path = os.path.join(args.ckpt_path, args.reader_encoder_ck_file)
|
||||
args.reader_downstream_ck_path = os.path.join(args.ckpt_path, args.reader_downstream_ck_file)
|
||||
|
||||
if args.get_reranker_data:
|
||||
get_rerank_data(args)
|
||||
|
@ -36,8 +45,7 @@ def rerank_and_retriever_eval():
|
|||
|
||||
if args.cal_reranker_metrics:
|
||||
total_top1_pem, _, _ = \
|
||||
cal_reranker_metrics(dev_gold_file=args.dev_gold_file, rerank_result_file=args.rerank_result_file)
|
||||
print(f"total top1 pem: {total_top1_pem}")
|
||||
cal_reranker_metrics(dev_gold_file=args.dev_gold_path, rerank_result_file=args.rerank_result_file)
|
||||
|
||||
if args.select_reader_data:
|
||||
select_reader_dev_data(args)
|
||||
|
@ -46,10 +54,18 @@ def rerank_and_retriever_eval():
|
|||
read(args)
|
||||
|
||||
if args.cal_reader_metrics:
|
||||
metrics = hotpotqa_eval(args.reader_result_file, args.dev_gold_file)
|
||||
metrics = hotpotqa_eval(args.reader_result_file, args.dev_gold_path)
|
||||
|
||||
if args.cal_reranker_metrics:
|
||||
print(f"total top1 pem: {total_top1_pem}")
|
||||
|
||||
if args.cal_reader_metrics:
|
||||
for k in metrics:
|
||||
print(f"{k}: {metrics[k]}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
t1 = time()
|
||||
rerank_and_retriever_eval()
|
||||
t2 = time()
|
||||
print(f"eval reranker and reader cost {(t2 - t1) / 3600} h")
|
||||
|
|
|
@ -31,8 +31,7 @@ from mindspore import load_checkpoint, load_param_into_net
|
|||
from src.onehop import OneHopBert
|
||||
from src.twohop import TwoHopBert
|
||||
from src.process_data import DataGen
|
||||
from src.onehop_bert import ModelOneHop
|
||||
from src.twohop_bert import ModelTwoHop
|
||||
from src.converted_bert import ModelOneHop
|
||||
from src.config import ThinkRetrieverConfig
|
||||
from src.utils import read_query, split_queries, get_new_title, get_raw_title, save_json
|
||||
|
||||
|
@ -84,10 +83,10 @@ def evaluation(d_id):
|
|||
print('********************** loading model ********************** ')
|
||||
|
||||
s_lm = time.time()
|
||||
model_onehop_bert = ModelOneHop()
|
||||
model_onehop_bert = ModelOneHop(256)
|
||||
param_dict = load_checkpoint(config.onehop_bert_path)
|
||||
load_param_into_net(model_onehop_bert, param_dict)
|
||||
model_twohop_bert = ModelTwoHop()
|
||||
model_twohop_bert = ModelOneHop(448)
|
||||
param_dict2 = load_checkpoint(config.twohop_bert_path)
|
||||
load_param_into_net(model_twohop_bert, param_dict2)
|
||||
onehop = OneHopBert(config, model_onehop_bert)
|
||||
|
|
|
@ -15,11 +15,8 @@
|
|||
# ============================================================================
|
||||
|
||||
# eval script
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export RANK_SIZE=$DEVICE_NUM
|
||||
export RANK_ID=0
|
||||
DATAPATH="../data"
|
||||
CKPTPATH="../ckpt"
|
||||
|
||||
if [ -d "eval_tr" ];
|
||||
then
|
||||
|
@ -34,6 +31,6 @@ cd ./eval_tr || exit
|
|||
env > env.log
|
||||
echo "start evaluation"
|
||||
|
||||
python retriever_eval.py > log.txt 2>&1 &
|
||||
python -u retriever_eval.py --vocab_path=$DATAPATH/vocab.txt --wiki_path=$DATAPATH/db_docs_bidirection_new.pkl --dev_path=$DATAPATH/hotpot_dev_fullwiki_v1_for_retriever.json --dev_data_path=$DATAPATH/dev_tf_idf_data_raw.pkl --q_path=$DATAPATH/queries --onehop_bert_path=$CKPTPATH/onehop_new.ckpt --onehop_mlp_path=$CKPTPATH/onehop_mlp.ckpt --twohop_bert_path=$CKPTPATH/twohop_new.ckpt --twohop_mlp_path=$CKPTPATH/twohop_mlp.ckpt > log.txt 2>&1 &
|
||||
|
||||
cd ..
|
||||
|
|
|
@ -16,6 +16,8 @@
|
|||
|
||||
# eval script
|
||||
|
||||
DATAPATH="../data"
|
||||
CKPTPATH="../ckpt"
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export RANK_SIZE=$DEVICE_NUM
|
||||
|
@ -34,6 +36,6 @@ cd ./eval || exit
|
|||
env > env.log
|
||||
echo "start evaluation"
|
||||
|
||||
python reranker_and_reader_eval.py --get_reranker_data --run_reranker --cal_reranker_metrics --select_reader_data --run_reader --cal_reader_metrics > log_reranker_and_reader.txt 2>&1 &
|
||||
python reranker_and_reader_eval.py --get_reranker_data --run_reranker --cal_reranker_metrics --select_reader_data --run_reader --cal_reader_metrics --data_path $DATAPATH --ckpt_path $CKPTPATH > log_reranker_and_reader.txt 2>&1 &
|
||||
|
||||
cd ..
|
||||
|
|
|
@ -0,0 +1,251 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""albert-xxlarge Model for reranker"""
|
||||
|
||||
import numpy as np
|
||||
from mindspore import nn, ops
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import dtype as mstype
|
||||
|
||||
|
||||
dst_type = mstype.float16
|
||||
dst_type2 = mstype.float32
|
||||
|
||||
|
||||
class LayerNorm(nn.Cell):
|
||||
"""LayerNorm layer"""
|
||||
def __init__(self, layer_norm_weight, layer_norm_bias):
|
||||
"""init function"""
|
||||
super(LayerNorm, self).__init__()
|
||||
self.reducemean = P.ReduceMean(keep_dims=True)
|
||||
self.sub = P.Sub()
|
||||
self.pow = P.Pow()
|
||||
self.add = P.Add()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.div = P.Div()
|
||||
self.mul = P.Mul()
|
||||
self.layer_norm_weight = layer_norm_weight
|
||||
self.layer_norm_bias = layer_norm_bias
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
diff_ex = self.sub(x, self.reducemean(x, -1))
|
||||
var_x = self.reducemean(self.pow(diff_ex, 2.0), -1)
|
||||
output = self.div(diff_ex, self.sqrt(self.add(var_x, 1e-12)))
|
||||
output = self.add(self.mul(output, self.layer_norm_weight), self.layer_norm_bias)
|
||||
return output
|
||||
|
||||
|
||||
class Linear(nn.Cell):
|
||||
"""Linear layer"""
|
||||
def __init__(self, linear_weight_shape, linear_bias):
|
||||
"""init function"""
|
||||
super(Linear, self).__init__()
|
||||
self.matmul = nn.MatMul()
|
||||
self.add = P.Add()
|
||||
self.weight = Parameter(Tensor(np.random.uniform(0, 1, linear_weight_shape).astype(np.float32)), name=None)
|
||||
self.bias = linear_bias
|
||||
|
||||
def construct(self, input_x):
|
||||
"""construct function"""
|
||||
output = self.matmul(ops.Cast()(input_x, dst_type), ops.Cast()(self.weight, dst_type))
|
||||
output = self.add(ops.Cast()(output, dst_type2), self.bias)
|
||||
return output
|
||||
|
||||
|
||||
class MultiHeadAttn(nn.Cell):
|
||||
"""Multi-head attention layer"""
|
||||
def __init__(self, batch_size, query_linear_bias, key_linear_bias, value_linear_bias):
|
||||
"""init function"""
|
||||
super(MultiHeadAttn, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
self.matmul = nn.MatMul()
|
||||
self.add = P.Add()
|
||||
self.reshape = P.Reshape()
|
||||
self.transpose = P.Transpose()
|
||||
self.div = P.Div()
|
||||
self.softmax = nn.Softmax(axis=3)
|
||||
|
||||
self.query_linear_weight = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)),
|
||||
name=None)
|
||||
self.query_linear_bias = query_linear_bias
|
||||
|
||||
self.key_linear_weight = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)),
|
||||
name=None)
|
||||
self.key_linear_bias = key_linear_bias
|
||||
|
||||
self.value_linear_weight = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)),
|
||||
name=None)
|
||||
self.value_linear_bias = value_linear_bias
|
||||
|
||||
self.reshape_shape = tuple([batch_size, 512, 64, 64])
|
||||
|
||||
self.w = Parameter(Tensor(np.random.uniform(0, 1, (64, 64, 4096)).astype(np.float32)), name=None)
|
||||
self.b = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, hidden_states, extended_attention_mask):
|
||||
"""construct function"""
|
||||
mixed_query_layer = self.matmul(ops.Cast()(hidden_states, dst_type),
|
||||
ops.Cast()(self.query_linear_weight, dst_type))
|
||||
mixed_query_layer = self.add(ops.Cast()(mixed_query_layer, dst_type2), self.query_linear_bias)
|
||||
|
||||
mixed_key_layer = self.matmul(ops.Cast()(hidden_states, dst_type),
|
||||
ops.Cast()(self.key_linear_weight, dst_type))
|
||||
mixed_key_layer = self.add(ops.Cast()(mixed_key_layer, dst_type2), self.key_linear_bias)
|
||||
|
||||
mixed_value_layer = self.matmul(ops.Cast()(hidden_states, dst_type),
|
||||
ops.Cast()(self.value_linear_weight, dst_type))
|
||||
mixed_value_layer = self.add(ops.Cast()(mixed_value_layer, dst_type2), self.value_linear_bias)
|
||||
|
||||
query_layer = self.reshape(mixed_query_layer, self.reshape_shape)
|
||||
key_layer = self.reshape(mixed_key_layer, self.reshape_shape)
|
||||
value_layer = self.reshape(mixed_value_layer, self.reshape_shape)
|
||||
|
||||
query_layer = self.transpose(query_layer, (0, 2, 1, 3))
|
||||
key_layer = self.transpose(key_layer, (0, 2, 3, 1))
|
||||
value_layer = self.transpose(value_layer, (0, 2, 1, 3))
|
||||
|
||||
attention_scores = self.matmul(ops.Cast()(query_layer, dst_type), ops.Cast()(key_layer, dst_type))
|
||||
attention_scores = self.div(ops.Cast()(attention_scores, dst_type2), ops.Cast()(8.0, dst_type2))
|
||||
attention_scores = self.add(attention_scores, extended_attention_mask)
|
||||
|
||||
attention_probs = self.softmax(attention_scores)
|
||||
context_layer = self.matmul(ops.Cast()(attention_probs, dst_type), ops.Cast()(value_layer, dst_type))
|
||||
context_layer = self.transpose(ops.Cast()(context_layer, dst_type2), (0, 2, 1, 3))
|
||||
|
||||
projected_context_layer = self.matmul(ops.Cast()(context_layer, dst_type).view(self.batch_size * 512, -1),
|
||||
ops.Cast()(self.w, dst_type).view(-1, 4096))\
|
||||
.view(self.batch_size, 512, 4096)
|
||||
projected_context_layer = self.add(ops.Cast()(projected_context_layer, dst_type2), self.b)
|
||||
return projected_context_layer
|
||||
|
||||
|
||||
class NewGeLU(nn.Cell):
|
||||
"""Gelu layer"""
|
||||
def __init__(self):
|
||||
"""init function"""
|
||||
super(NewGeLU, self).__init__()
|
||||
self.mul = P.Mul()
|
||||
self.pow = P.Pow()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.tanh = nn.Tanh()
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
output = self.mul(self.add(x, self.mul(self.pow(x, 3.0), 0.044714998453855515)), 0.7978845834732056)
|
||||
output = self.tanh(output)
|
||||
output = self.mul(self.mul(x, 0.5), self.add(output, 1.0))
|
||||
return output
|
||||
|
||||
|
||||
class AlbertTransformer(nn.Cell):
|
||||
"""Transformer layer with LayerNOrm"""
|
||||
def __init__(self, batch_size, ffn_weight_shape, ffn_output_weight_shape, query_linear_bias,
|
||||
key_linear_bias, value_linear_bias, layernorm_weight, layernorm_bias, ffn_bias, ffn_output_bias):
|
||||
"""init function"""
|
||||
super(AlbertTransformer, self).__init__()
|
||||
self.multiheadattn = MultiHeadAttn(batch_size=batch_size,
|
||||
query_linear_bias=query_linear_bias,
|
||||
key_linear_bias=key_linear_bias,
|
||||
value_linear_bias=value_linear_bias)
|
||||
self.add = P.Add()
|
||||
self.layernorm = LayerNorm(layer_norm_weight=layernorm_weight, layer_norm_bias=layernorm_bias)
|
||||
self.ffn = Linear(linear_weight_shape=ffn_weight_shape, linear_bias=ffn_bias)
|
||||
self.newgelu = NewGeLU()
|
||||
self.ffn_output = Linear(linear_weight_shape=ffn_output_weight_shape, linear_bias=ffn_output_bias)
|
||||
self.add_1 = P.Add()
|
||||
|
||||
def construct(self, hidden_states, extended_attention_mask):
|
||||
"""construct function"""
|
||||
attention_output = self.multiheadattn(hidden_states, extended_attention_mask)
|
||||
hidden_states = self.add(hidden_states, attention_output)
|
||||
hidden_states = self.layernorm(hidden_states)
|
||||
ffn_output = self.ffn(hidden_states)
|
||||
ffn_output = self.newgelu(ffn_output)
|
||||
ffn_output = self.ffn_output(ffn_output)
|
||||
hidden_states = self.add_1(ffn_output, hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Albert(nn.Cell):
|
||||
"""Albert model for rerank"""
|
||||
def __init__(self, batch_size):
|
||||
"""init function"""
|
||||
super(Albert, self).__init__()
|
||||
self.expanddims = P.ExpandDims()
|
||||
self.cast = P.Cast()
|
||||
self.sub = P.Sub()
|
||||
self.mul = P.Mul()
|
||||
self.gather = P.Gather()
|
||||
self.add = P.Add()
|
||||
|
||||
self.layernorm_1_weight = Parameter(Tensor(np.random.uniform(0, 1, (128,)).astype(np.float32)), name=None)
|
||||
self.layernorm_1_bias = Parameter(Tensor(np.random.uniform(0, 1, (128,)).astype(np.float32)), name=None)
|
||||
self.embedding_hidden_mapping_in_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)),
|
||||
name=None)
|
||||
self.query_linear_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.key_linear_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.value_linear_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.albert_transformer_layernorm_w = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)),
|
||||
name=None)
|
||||
self.albert_transformer_layernorm_b = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)),
|
||||
name=None)
|
||||
self.ffn_bias = Parameter(Tensor(np.random.uniform(0, 1, (16384,)).astype(np.float32)), name=None)
|
||||
self.ffn_output_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.layernorm_2_weight = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.layernorm_2_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
|
||||
self.word_embeddings = Parameter(Tensor(np.random.uniform(0, 1, (30005, 128)).astype(np.float32)), name=None)
|
||||
self.token_type_embeddings = Parameter(Tensor(np.random.uniform(0, 1, (2, 128)).astype(np.float32)), name=None)
|
||||
|
||||
self.position_embeddings = Parameter(Tensor(np.random.uniform(0, 1, (1, 512, 128)).astype(np.float32)),
|
||||
name=None)
|
||||
|
||||
self.layernorm_1 = LayerNorm(layer_norm_weight=self.layernorm_1_weight, layer_norm_bias=self.layernorm_1_bias)
|
||||
self.embedding_hidden_mapping_in = Linear(linear_weight_shape=(128, 4096),
|
||||
linear_bias=self.embedding_hidden_mapping_in_bias)
|
||||
|
||||
self.albert_transformer = AlbertTransformer(batch_size=batch_size,
|
||||
ffn_weight_shape=(4096, 16384),
|
||||
ffn_output_weight_shape=(16384, 4096),
|
||||
query_linear_bias=self.query_linear_bias,
|
||||
key_linear_bias=self.key_linear_bias,
|
||||
value_linear_bias=self.value_linear_bias,
|
||||
layernorm_weight=self.albert_transformer_layernorm_w,
|
||||
layernorm_bias=self.albert_transformer_layernorm_b,
|
||||
ffn_bias=self.ffn_bias,
|
||||
ffn_output_bias=self.ffn_output_bias)
|
||||
self.layernorm_2 = LayerNorm(layer_norm_weight=self.layernorm_2_weight, layer_norm_bias=self.layernorm_2_bias)
|
||||
|
||||
def construct(self, input_ids, attention_mask, token_type_ids):
|
||||
"""construct function"""
|
||||
extended_attention_mask = self.expanddims(attention_mask, 1)
|
||||
extended_attention_mask = self.expanddims(extended_attention_mask, 2)
|
||||
extended_attention_mask = self.cast(extended_attention_mask, mstype.float32)
|
||||
extended_attention_mask = self.mul(self.sub(1.0, extended_attention_mask), -10000.0)
|
||||
|
||||
inputs_embeds = self.gather(self.word_embeddings, input_ids, 0)
|
||||
token_type_embeddings = self.gather(self.token_type_embeddings, token_type_ids, 0)
|
||||
embeddings = self.add(self.add(inputs_embeds, self.position_embeddings), token_type_embeddings)
|
||||
embeddings = self.layernorm_1(embeddings)
|
||||
|
||||
hidden_states = self.embedding_hidden_mapping_in(embeddings)
|
||||
|
||||
for _ in range(12):
|
||||
hidden_states = self.albert_transformer(hidden_states, extended_attention_mask)
|
||||
hidden_states = self.layernorm_2(hidden_states)
|
||||
return hidden_states
|
|
@ -414,8 +414,8 @@ def convert_example_to_features(tokenizer, args, examples):
|
|||
|
||||
def get_rerank_data(args):
|
||||
"""function for generating reranker's data"""
|
||||
new_dev_data = gen_dev_data(dev_file=args.dev_gold_file,
|
||||
db_path=args.wiki_db_file,
|
||||
new_dev_data = gen_dev_data(dev_file=args.dev_gold_path,
|
||||
db_path=args.wiki_db_path,
|
||||
topk_file=args.retriever_result_file)
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.albert_model_path)
|
||||
new_tokens = ['[q]', '[/q]', '<t>', '</t>', '[s]']
|
||||
|
|
|
@ -39,9 +39,9 @@ def ThinkRetrieverConfig():
|
|||
parser.add_argument("--dev_path", type=str, default='../hotpot_dev_fullwiki_v1_for_retriever.json',
|
||||
help="dev path")
|
||||
parser.add_argument("--dev_data_path", type=str, default='../dev_tf_idf_data_raw.pkl', help="dev data path")
|
||||
parser.add_argument("--onehop_bert_path", type=str, default='../onehop.ckpt', help="onehop bert ckpt path")
|
||||
parser.add_argument("--onehop_bert_path", type=str, default='../onehop_new.ckpt', help="onehop bert ckpt path")
|
||||
parser.add_argument("--onehop_mlp_path", type=str, default='../onehop_mlp.ckpt', help="onehop mlp ckpt path")
|
||||
parser.add_argument("--twohop_bert_path", type=str, default='../twohop.ckpt', help="twohop bert ckpt path")
|
||||
parser.add_argument("--twohop_bert_path", type=str, default='../twohop_new.ckpt', help="twohop bert ckpt path")
|
||||
parser.add_argument("--twohop_mlp_path", type=str, default='../twohop_mlp.ckpt', help="twohop mlp ckpt path")
|
||||
parser.add_argument("--q_path", type=str, default="../queries", help="queries data path")
|
||||
return parser.parse_args()
|
||||
|
|
|
@ -0,0 +1,278 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
One Hop BERT.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor, Parameter
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
BATCH_SIZE = -1
|
||||
|
||||
|
||||
class LayerNorm(nn.Cell):
|
||||
"""layer norm"""
|
||||
|
||||
def __init__(self):
|
||||
super(LayerNorm, self).__init__()
|
||||
self.reducemean = P.ReduceMean(keep_dims=True)
|
||||
self.sub = P.Sub()
|
||||
self.cast = P.Cast()
|
||||
self.cast_to = mstype.float32
|
||||
self.pow = P.Pow()
|
||||
self.pow_weight = 2.0
|
||||
self.add = P.Add()
|
||||
self.add_bias_0 = 9.999999960041972e-13
|
||||
self.sqrt = P.Sqrt()
|
||||
self.div = P.Div()
|
||||
self.mul = P.Mul()
|
||||
self.mul_weight = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.add_bias_1 = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
x_mean = self.reducemean(x, -1)
|
||||
x_sub = self.sub(x, x_mean)
|
||||
x_sub = self.cast(x_sub, self.cast_to)
|
||||
x_pow = self.pow(x_sub, self.pow_weight)
|
||||
out_mean = self.reducemean(x_pow, -1)
|
||||
out_add = self.add(out_mean, self.add_bias_0)
|
||||
out_sqrt = self.sqrt(out_add)
|
||||
out_div = self.div(x_sub, out_sqrt)
|
||||
out_mul = self.mul(out_div, self.mul_weight)
|
||||
output = self.add(out_mul, self.add_bias_1)
|
||||
return output
|
||||
|
||||
|
||||
class MultiHeadAttn(nn.Cell):
|
||||
"""multi head attention layer"""
|
||||
|
||||
def __init__(self, seq_len):
|
||||
super(MultiHeadAttn, self).__init__()
|
||||
self.matmul = nn.MatMul()
|
||||
self.matmul.to_float(mstype.float16)
|
||||
self.query = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.key = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.value = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.add = P.Add()
|
||||
self.query_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.key_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.value_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.reshape = P.Reshape()
|
||||
self.to_shape_0 = tuple([BATCH_SIZE, seq_len, 12, 64])
|
||||
self.transpose = P.Transpose()
|
||||
self.div = P.Div()
|
||||
self.div_w = 8.0
|
||||
self.softmax = nn.Softmax(axis=3)
|
||||
self.to_shape_1 = tuple([BATCH_SIZE, seq_len, 768])
|
||||
self.context_weight = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.context_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, input_tensor, attention_mask):
|
||||
"""construct function"""
|
||||
query_output = self.matmul(input_tensor, self.query)
|
||||
key_output = self.matmul(input_tensor, self.key)
|
||||
value_output = self.matmul(input_tensor, self.value)
|
||||
query_output = P.Cast()(query_output, mstype.float32)
|
||||
key_output = P.Cast()(key_output, mstype.float32)
|
||||
value_output = P.Cast()(value_output, mstype.float32)
|
||||
query_output = self.add(query_output, self.query_bias)
|
||||
key_output = self.add(key_output, self.key_bias)
|
||||
value_output = self.add(value_output, self.value_bias)
|
||||
query_layer = self.reshape(query_output, self.to_shape_0)
|
||||
key_layer = self.reshape(key_output, self.to_shape_0)
|
||||
value_layer = self.reshape(value_output, self.to_shape_0)
|
||||
query_layer = self.transpose(query_layer, (0, 2, 1, 3))
|
||||
key_layer = self.transpose(key_layer, (0, 2, 3, 1))
|
||||
value_layer = self.transpose(value_layer, (0, 2, 1, 3))
|
||||
attention_scores = self.matmul(query_layer, key_layer)
|
||||
attention_scores = P.Cast()(attention_scores, mstype.float32)
|
||||
attention_scores = self.div(attention_scores, self.div_w)
|
||||
attention_scores = self.add(attention_scores, attention_mask)
|
||||
attention_scores = P.Cast()(attention_scores, mstype.float32)
|
||||
attention_probs = self.softmax(attention_scores)
|
||||
context_layer = self.matmul(attention_probs, value_layer)
|
||||
context_layer = P.Cast()(context_layer, mstype.float32)
|
||||
context_layer = self.transpose(context_layer, (0, 2, 1, 3))
|
||||
context_layer = self.reshape(context_layer, self.to_shape_1)
|
||||
context_layer = self.matmul(context_layer, self.context_weight)
|
||||
context_layer = P.Cast()(context_layer, mstype.float32)
|
||||
context_layer = self.add(context_layer, self.context_bias)
|
||||
return context_layer
|
||||
|
||||
|
||||
class Linear(nn.Cell):
|
||||
"""linear layer"""
|
||||
|
||||
def __init__(self, w_shape, b_shape):
|
||||
super(Linear, self).__init__()
|
||||
self.matmul = nn.MatMul()
|
||||
self.matmul.to_float(mstype.float16)
|
||||
self.w = Parameter(Tensor(np.random.uniform(0, 1, w_shape).astype(np.float32)),
|
||||
name=None)
|
||||
self.add = P.Add()
|
||||
self.b = Parameter(Tensor(np.random.uniform(0, 1, b_shape).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
output = self.matmul(x, self.w)
|
||||
output = P.Cast()(output, mstype.float32)
|
||||
output = self.add(output, self.b)
|
||||
return output
|
||||
|
||||
|
||||
class GeLU(nn.Cell):
|
||||
"""gelu layer"""
|
||||
|
||||
def __init__(self):
|
||||
super(GeLU, self).__init__()
|
||||
self.div = P.Div()
|
||||
self.div_w = 1.4142135381698608
|
||||
self.erf = P.Erf()
|
||||
self.add = P.Add()
|
||||
self.add_bias = 1.0
|
||||
self.mul = P.Mul()
|
||||
self.mul_w = 0.5
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
output = self.div(x, self.div_w)
|
||||
output = self.erf(output)
|
||||
output = self.add(output, self.add_bias)
|
||||
output = self.mul(x, output)
|
||||
output = self.mul(output, self.mul_w)
|
||||
return output
|
||||
|
||||
|
||||
class TransformerLayer(nn.Cell):
|
||||
"""transformer layer"""
|
||||
|
||||
def __init__(self, seq_len, intermediate_size, intermediate_bias, output_size, output_bias):
|
||||
super(TransformerLayer, self).__init__()
|
||||
self.attention = MultiHeadAttn(seq_len)
|
||||
self.add = P.Add()
|
||||
self.layernorm1 = LayerNorm()
|
||||
self.intermediate = Linear(w_shape=intermediate_size,
|
||||
b_shape=intermediate_bias)
|
||||
self.gelu = GeLU()
|
||||
self.output = Linear(w_shape=output_size,
|
||||
b_shape=output_bias)
|
||||
self.layernorm2 = LayerNorm()
|
||||
|
||||
def construct(self, hidden_states, attention_mask):
|
||||
"""construct function"""
|
||||
attention_output = self.attention(hidden_states, attention_mask)
|
||||
attention_output = self.add(attention_output, hidden_states)
|
||||
attention_output = self.layernorm1(attention_output)
|
||||
intermediate_output = self.intermediate(attention_output)
|
||||
intermediate_output = self.gelu(intermediate_output)
|
||||
output = self.output(intermediate_output)
|
||||
output = self.add(output, attention_output)
|
||||
output = self.layernorm2(output)
|
||||
return output
|
||||
|
||||
|
||||
class BertEncoder(nn.Cell):
|
||||
"""encoder layer"""
|
||||
|
||||
def __init__(self, seq_len):
|
||||
super(BertEncoder, self).__init__()
|
||||
self.layer1 = TransformerLayer(seq_len,
|
||||
intermediate_size=(768, 3072),
|
||||
intermediate_bias=(3072,),
|
||||
output_size=(3072, 768),
|
||||
output_bias=(768,))
|
||||
self.layer2 = TransformerLayer(seq_len,
|
||||
intermediate_size=(768, 3072),
|
||||
intermediate_bias=(3072,),
|
||||
output_size=(3072, 768),
|
||||
output_bias=(768,))
|
||||
self.layer3 = TransformerLayer(seq_len,
|
||||
intermediate_size=(768, 3072),
|
||||
intermediate_bias=(3072,),
|
||||
output_size=(3072, 768),
|
||||
output_bias=(768,))
|
||||
self.layer4 = TransformerLayer(seq_len,
|
||||
intermediate_size=(768, 3072),
|
||||
intermediate_bias=(3072,),
|
||||
output_size=(3072, 768),
|
||||
output_bias=(768,))
|
||||
|
||||
def construct(self, input_tensor, attention_mask):
|
||||
"""construct function"""
|
||||
layer1_output = self.layer1(input_tensor, attention_mask)
|
||||
layer2_output = self.layer2(layer1_output, attention_mask)
|
||||
layer3_output = self.layer3(layer2_output, attention_mask)
|
||||
layer4_output = self.layer4(layer3_output, attention_mask)
|
||||
return layer4_output
|
||||
|
||||
|
||||
class ModelOneHop(nn.Cell):
|
||||
"""one hop layer"""
|
||||
|
||||
def __init__(self, seq_len):
|
||||
super(ModelOneHop, self).__init__()
|
||||
self.expanddims = P.ExpandDims()
|
||||
self.expanddims_axis_0 = 1
|
||||
self.expanddims_axis_1 = 2
|
||||
self.cast = P.Cast()
|
||||
self.cast_to = mstype.float32
|
||||
self.sub = P.Sub()
|
||||
self.sub_bias = 1.0
|
||||
self.mul = P.Mul()
|
||||
self.mul_w = -10000.0
|
||||
self.input_weight_0 = Parameter(Tensor(np.random.uniform(0, 1, (30522, 768)).astype(np.float32)),
|
||||
name=None)
|
||||
self.gather_axis_0 = 0
|
||||
self.gather = P.Gather()
|
||||
self.input_weight_1 = Parameter(Tensor(np.random.uniform(0, 1, (2, 768)).astype(np.float32)), name=None)
|
||||
self.add = P.Add()
|
||||
self.add_bias = Parameter(Tensor(np.random.uniform(0, 1, (1, seq_len, 768)).astype(np.float32)), name=None)
|
||||
self.layernorm = LayerNorm()
|
||||
self.encoder_layer_1_4 = BertEncoder(seq_len)
|
||||
self.encoder_layer_5_8 = BertEncoder(seq_len)
|
||||
self.encoder_layer_9_12 = BertEncoder(seq_len)
|
||||
self.cls_ids = Tensor(np.array(0))
|
||||
self.gather_axis_1 = 1
|
||||
self.dense = nn.Dense(in_channels=768, out_channels=768, has_bias=True)
|
||||
self.tanh = nn.Tanh()
|
||||
|
||||
def construct(self, input_ids, token_type_ids, attention_mask):
|
||||
"""construct function"""
|
||||
input_ids = self.cast(input_ids, mstype.int32)
|
||||
token_type_ids = self.cast(token_type_ids, mstype.int32)
|
||||
attention_mask = self.cast(attention_mask, mstype.int32)
|
||||
attention_mask = self.expanddims(attention_mask, self.expanddims_axis_0)
|
||||
attention_mask = self.expanddims(attention_mask, self.expanddims_axis_1)
|
||||
attention_mask = self.cast(attention_mask, self.cast_to)
|
||||
attention_mask = self.sub(self.sub_bias, attention_mask)
|
||||
attention_mask_matrix = self.mul(attention_mask, self.mul_w)
|
||||
word_embeddings = self.gather(self.input_weight_0, input_ids, self.gather_axis_0)
|
||||
token_type_embeddings = self.gather(self.input_weight_1, token_type_ids, self.gather_axis_0)
|
||||
word_embeddings = self.add(word_embeddings, self.add_bias)
|
||||
embedding_output = self.add(word_embeddings, token_type_embeddings)
|
||||
embedding_output = self.layernorm(embedding_output)
|
||||
encoder_output = self.encoder_layer_1_4(embedding_output, attention_mask_matrix)
|
||||
encoder_output = self.encoder_layer_5_8(encoder_output, attention_mask_matrix)
|
||||
encoder_output = self.encoder_layer_9_12(encoder_output, attention_mask_matrix)
|
||||
cls_output = self.gather(encoder_output, self.cls_ids, self.gather_axis_1)
|
||||
pooled_output = self.dense(cls_output)
|
||||
pooled_output = self.tanh(pooled_output)
|
||||
|
||||
return pooled_output
|
|
@ -120,13 +120,11 @@ def hotpotqa_eval(prediction_file, gold_file):
|
|||
cur_id = dp['_id']
|
||||
can_eval_joint = True
|
||||
if cur_id not in prediction['answer']:
|
||||
print('missing answer {}'.format(cur_id))
|
||||
can_eval_joint = False
|
||||
else:
|
||||
em, prec, recall = update_answer(
|
||||
metrics, prediction['answer'][cur_id], dp['answer'])
|
||||
if cur_id not in prediction['sp']:
|
||||
print('missing sp fact {}'.format(cur_id))
|
||||
can_eval_joint = False
|
||||
else:
|
||||
sp_em, sp_prec, sp_recall = update_sp(
|
||||
|
|
|
@ -1,302 +0,0 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
One Hop BERT.
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor, Parameter
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
BATCH_SIZE = -1
|
||||
|
||||
|
||||
class LayerNorm(nn.Cell):
|
||||
"""layer norm"""
|
||||
def __init__(self):
|
||||
super(LayerNorm, self).__init__()
|
||||
self.reducemean_0 = P.ReduceMean(keep_dims=True)
|
||||
self.sub_1 = P.Sub()
|
||||
self.cast_2 = P.Cast()
|
||||
self.cast_2_to = mstype.float32
|
||||
self.pow_3 = P.Pow()
|
||||
self.pow_3_input_weight = 2.0
|
||||
self.reducemean_4 = P.ReduceMean(keep_dims=True)
|
||||
self.add_5 = P.Add()
|
||||
self.add_5_bias = 9.999999960041972e-13
|
||||
self.sqrt_6 = P.Sqrt()
|
||||
self.div_7 = P.Div()
|
||||
self.mul_8 = P.Mul()
|
||||
self.mul_8_w = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.add_9 = P.Add()
|
||||
self.add_9_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_reducemean_0 = self.reducemean_0(x, -1)
|
||||
opt_sub_1 = self.sub_1(x, opt_reducemean_0)
|
||||
opt_cast_2 = self.cast_2(opt_sub_1, self.cast_2_to)
|
||||
opt_pow_3 = self.pow_3(opt_cast_2, self.pow_3_input_weight)
|
||||
opt_reducemean_4 = self.reducemean_4(opt_pow_3, -1)
|
||||
opt_add_5 = self.add_5(opt_reducemean_4, self.add_5_bias)
|
||||
opt_sqrt_6 = self.sqrt_6(opt_add_5)
|
||||
opt_div_7 = self.div_7(opt_sub_1, opt_sqrt_6)
|
||||
opt_mul_8 = self.mul_8(opt_div_7, self.mul_8_w)
|
||||
opt_add_9 = self.add_9(opt_mul_8, self.add_9_bias)
|
||||
return opt_add_9
|
||||
|
||||
|
||||
class MultiHeadAttn(nn.Cell):
|
||||
"""multi head attention layer"""
|
||||
def __init__(self):
|
||||
super(MultiHeadAttn, self).__init__()
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0.to_float(mstype.float16)
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.matmul_1 = nn.MatMul()
|
||||
self.matmul_1.to_float(mstype.float16)
|
||||
self.matmul_1_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.matmul_2 = nn.MatMul()
|
||||
self.matmul_2.to_float(mstype.float16)
|
||||
self.matmul_2_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.add_3 = P.Add()
|
||||
self.add_3_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.add_4 = P.Add()
|
||||
self.add_4_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.add_5 = P.Add()
|
||||
self.add_5_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.reshape_6 = P.Reshape()
|
||||
self.reshape_6_shape = tuple([BATCH_SIZE, 256, 12, 64])
|
||||
self.reshape_7 = P.Reshape()
|
||||
self.reshape_7_shape = tuple([BATCH_SIZE, 256, 12, 64])
|
||||
self.reshape_8 = P.Reshape()
|
||||
self.reshape_8_shape = tuple([BATCH_SIZE, 256, 12, 64])
|
||||
self.transpose_9 = P.Transpose()
|
||||
self.transpose_10 = P.Transpose()
|
||||
self.transpose_11 = P.Transpose()
|
||||
self.matmul_12 = nn.MatMul()
|
||||
self.matmul_12.to_float(mstype.float16)
|
||||
self.div_13 = P.Div()
|
||||
self.div_13_w = 8.0
|
||||
self.add_14 = P.Add()
|
||||
self.softmax_15 = nn.Softmax(axis=3)
|
||||
self.matmul_16 = nn.MatMul()
|
||||
self.matmul_16.to_float(mstype.float16)
|
||||
self.transpose_17 = P.Transpose()
|
||||
self.reshape_18 = P.Reshape()
|
||||
self.reshape_18_shape = tuple([BATCH_SIZE, 256, 768])
|
||||
self.matmul_19 = nn.MatMul()
|
||||
self.matmul_19.to_float(mstype.float16)
|
||||
self.matmul_19_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.add_20 = P.Add()
|
||||
self.add_20_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(x, self.matmul_0_w)
|
||||
opt_matmul_1 = self.matmul_1(x, self.matmul_1_w)
|
||||
opt_matmul_2 = self.matmul_2(x, self.matmul_2_w)
|
||||
opt_matmul_0 = P.Cast()(opt_matmul_0, mstype.float32)
|
||||
opt_matmul_1 = P.Cast()(opt_matmul_1, mstype.float32)
|
||||
opt_matmul_2 = P.Cast()(opt_matmul_2, mstype.float32)
|
||||
opt_add_3 = self.add_3(opt_matmul_0, self.add_3_bias)
|
||||
opt_add_4 = self.add_4(opt_matmul_1, self.add_4_bias)
|
||||
opt_add_5 = self.add_5(opt_matmul_2, self.add_5_bias)
|
||||
opt_reshape_6 = self.reshape_6(opt_add_3, self.reshape_6_shape)
|
||||
opt_reshape_7 = self.reshape_7(opt_add_4, self.reshape_7_shape)
|
||||
opt_reshape_8 = self.reshape_8(opt_add_5, self.reshape_8_shape)
|
||||
opt_transpose_9 = self.transpose_9(opt_reshape_6, (0, 2, 1, 3))
|
||||
opt_transpose_10 = self.transpose_10(opt_reshape_7, (0, 2, 3, 1))
|
||||
opt_transpose_11 = self.transpose_11(opt_reshape_8, (0, 2, 1, 3))
|
||||
opt_matmul_12 = self.matmul_12(opt_transpose_9, opt_transpose_10)
|
||||
opt_matmul_12 = P.Cast()(opt_matmul_12, mstype.float32)
|
||||
opt_div_13 = self.div_13(opt_matmul_12, self.div_13_w)
|
||||
opt_add_14 = self.add_14(opt_div_13, x0)
|
||||
opt_add_14 = P.Cast()(opt_add_14, mstype.float32)
|
||||
opt_softmax_15 = self.softmax_15(opt_add_14)
|
||||
opt_matmul_16 = self.matmul_16(opt_softmax_15, opt_transpose_11)
|
||||
opt_matmul_16 = P.Cast()(opt_matmul_16, mstype.float32)
|
||||
opt_transpose_17 = self.transpose_17(opt_matmul_16, (0, 2, 1, 3))
|
||||
opt_reshape_18 = self.reshape_18(opt_transpose_17, self.reshape_18_shape)
|
||||
opt_matmul_19 = self.matmul_19(opt_reshape_18, self.matmul_19_w)
|
||||
opt_matmul_19 = P.Cast()(opt_matmul_19, mstype.float32)
|
||||
opt_add_20 = self.add_20(opt_matmul_19, self.add_20_bias)
|
||||
return opt_add_20
|
||||
|
||||
|
||||
class Linear(nn.Cell):
|
||||
"""linear layer"""
|
||||
def __init__(self, matmul_0_weight_shape, add_1_bias_shape):
|
||||
super(Linear, self).__init__()
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0.to_float(mstype.float16)
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, matmul_0_weight_shape).astype(np.float32)),
|
||||
name=None)
|
||||
self.add_1 = P.Add()
|
||||
self.add_1_bias = Parameter(Tensor(np.random.uniform(0, 1, add_1_bias_shape).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(x, self.matmul_0_w)
|
||||
opt_matmul_0 = P.Cast()(opt_matmul_0, mstype.float32)
|
||||
opt_add_1 = self.add_1(opt_matmul_0, self.add_1_bias)
|
||||
return opt_add_1
|
||||
|
||||
|
||||
class GeLU(nn.Cell):
|
||||
"""gelu layer"""
|
||||
def __init__(self):
|
||||
super(GeLU, self).__init__()
|
||||
self.div_0 = P.Div()
|
||||
self.div_0_w = 1.4142135381698608
|
||||
self.erf_1 = P.Erf()
|
||||
self.add_2 = P.Add()
|
||||
self.add_2_bias = 1.0
|
||||
self.mul_3 = P.Mul()
|
||||
self.mul_4 = P.Mul()
|
||||
self.mul_4_w = 0.5
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_div_0 = self.div_0(x, self.div_0_w)
|
||||
opt_erf_1 = self.erf_1(opt_div_0)
|
||||
opt_add_2 = self.add_2(opt_erf_1, self.add_2_bias)
|
||||
opt_mul_3 = self.mul_3(x, opt_add_2)
|
||||
opt_mul_4 = self.mul_4(opt_mul_3, self.mul_4_w)
|
||||
return opt_mul_4
|
||||
|
||||
|
||||
class TransformerLayer(nn.Cell):
|
||||
"""transformer layer"""
|
||||
def __init__(self, linear3_0_matmul_0_weight_shape, linear3_0_add_1_bias_shape, linear3_1_matmul_0_weight_shape,
|
||||
linear3_1_add_1_bias_shape):
|
||||
super(TransformerLayer, self).__init__()
|
||||
self.multiheadattn_0 = MultiHeadAttn()
|
||||
self.add_0 = P.Add()
|
||||
self.layernorm1_0 = LayerNorm()
|
||||
self.linear3_0 = Linear(matmul_0_weight_shape=linear3_0_matmul_0_weight_shape,
|
||||
add_1_bias_shape=linear3_0_add_1_bias_shape)
|
||||
self.gelu1_0 = GeLU()
|
||||
self.linear3_1 = Linear(matmul_0_weight_shape=linear3_1_matmul_0_weight_shape,
|
||||
add_1_bias_shape=linear3_1_add_1_bias_shape)
|
||||
self.add_1 = P.Add()
|
||||
self.layernorm1_1 = LayerNorm()
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
multiheadattn_0_opt = self.multiheadattn_0(x, x0)
|
||||
opt_add_0 = self.add_0(multiheadattn_0_opt, x)
|
||||
layernorm1_0_opt = self.layernorm1_0(opt_add_0)
|
||||
linear3_0_opt = self.linear3_0(layernorm1_0_opt)
|
||||
gelu1_0_opt = self.gelu1_0(linear3_0_opt)
|
||||
linear3_1_opt = self.linear3_1(gelu1_0_opt)
|
||||
opt_add_1 = self.add_1(linear3_1_opt, layernorm1_0_opt)
|
||||
layernorm1_1_opt = self.layernorm1_1(opt_add_1)
|
||||
return layernorm1_1_opt
|
||||
|
||||
|
||||
class Encoder1_4(nn.Cell):
|
||||
"""encoder layer"""
|
||||
def __init__(self):
|
||||
super(Encoder1_4, self).__init__()
|
||||
self.module47_0 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
|
||||
linear3_0_add_1_bias_shape=(3072,),
|
||||
linear3_1_matmul_0_weight_shape=(3072, 768),
|
||||
linear3_1_add_1_bias_shape=(768,))
|
||||
self.module47_1 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
|
||||
linear3_0_add_1_bias_shape=(3072,),
|
||||
linear3_1_matmul_0_weight_shape=(3072, 768),
|
||||
linear3_1_add_1_bias_shape=(768,))
|
||||
self.module47_2 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
|
||||
linear3_0_add_1_bias_shape=(3072,),
|
||||
linear3_1_matmul_0_weight_shape=(3072, 768),
|
||||
linear3_1_add_1_bias_shape=(768,))
|
||||
self.module47_3 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
|
||||
linear3_0_add_1_bias_shape=(3072,),
|
||||
linear3_1_matmul_0_weight_shape=(3072, 768),
|
||||
linear3_1_add_1_bias_shape=(768,))
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
module47_0_opt = self.module47_0(x, x0)
|
||||
module47_1_opt = self.module47_1(module47_0_opt, x0)
|
||||
module47_2_opt = self.module47_2(module47_1_opt, x0)
|
||||
module47_3_opt = self.module47_3(module47_2_opt, x0)
|
||||
return module47_3_opt
|
||||
|
||||
|
||||
class ModelOneHop(nn.Cell):
|
||||
"""one hop layer"""
|
||||
def __init__(self):
|
||||
super(ModelOneHop, self).__init__()
|
||||
self.expanddims_0 = P.ExpandDims()
|
||||
self.expanddims_0_axis = 1
|
||||
self.expanddims_3 = P.ExpandDims()
|
||||
self.expanddims_3_axis = 2
|
||||
self.cast_5 = P.Cast()
|
||||
self.cast_5_to = mstype.float32
|
||||
self.sub_7 = P.Sub()
|
||||
self.sub_7_bias = 1.0
|
||||
self.mul_9 = P.Mul()
|
||||
self.mul_9_w = -10000.0
|
||||
self.gather_1_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (30522, 768)).astype(np.float32)),
|
||||
name=None)
|
||||
self.gather_1_axis = 0
|
||||
self.gather_1 = P.Gather()
|
||||
self.gather_2_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (2, 768)).astype(np.float32)), name=None)
|
||||
self.gather_2_axis = 0
|
||||
self.gather_2 = P.Gather()
|
||||
self.add_4 = P.Add()
|
||||
self.add_4_bias = Parameter(Tensor(np.random.uniform(0, 1, (1, 256, 768)).astype(np.float32)), name=None)
|
||||
self.add_6 = P.Add()
|
||||
self.layernorm1_0 = LayerNorm()
|
||||
self.module51_0 = Encoder1_4()
|
||||
self.module51_1 = Encoder1_4()
|
||||
self.module51_2 = Encoder1_4()
|
||||
self.gather_643_input_weight = Tensor(np.array(0))
|
||||
self.gather_643_axis = 1
|
||||
self.gather_643 = P.Gather()
|
||||
self.dense_644 = nn.Dense(in_channels=768, out_channels=768, has_bias=True)
|
||||
self.tanh_645 = nn.Tanh()
|
||||
|
||||
def construct(self, input_ids, token_type_ids, attention_mask):
|
||||
"""construct function"""
|
||||
input_ids = self.cast_5(input_ids, mstype.int32)
|
||||
token_type_ids = self.cast_5(token_type_ids, mstype.int32)
|
||||
attention_mask = self.cast_5(attention_mask, mstype.int32)
|
||||
opt_expanddims_0 = self.expanddims_0(attention_mask, self.expanddims_0_axis)
|
||||
opt_expanddims_3 = self.expanddims_3(opt_expanddims_0, self.expanddims_3_axis)
|
||||
opt_cast_5 = self.cast_5(opt_expanddims_3, self.cast_5_to)
|
||||
opt_sub_7 = self.sub_7(self.sub_7_bias, opt_cast_5)
|
||||
opt_mul_9 = self.mul_9(opt_sub_7, self.mul_9_w)
|
||||
opt_gather_1_axis = self.gather_1_axis
|
||||
opt_gather_1 = self.gather_1(self.gather_1_input_weight, input_ids, opt_gather_1_axis)
|
||||
opt_gather_2_axis = self.gather_2_axis
|
||||
opt_gather_2 = self.gather_2(self.gather_2_input_weight, token_type_ids, opt_gather_2_axis)
|
||||
opt_add_4 = self.add_4(opt_gather_1, self.add_4_bias)
|
||||
opt_add_6 = self.add_6(opt_add_4, opt_gather_2)
|
||||
layernorm1_0_opt = self.layernorm1_0(opt_add_6)
|
||||
module51_0_opt = self.module51_0(layernorm1_0_opt, opt_mul_9)
|
||||
module51_1_opt = self.module51_1(module51_0_opt, opt_mul_9)
|
||||
module51_2_opt = self.module51_2(module51_1_opt, opt_mul_9)
|
||||
opt_gather_643_axis = self.gather_643_axis
|
||||
opt_gather_643 = self.gather_643(module51_2_opt, self.gather_643_input_weight, opt_gather_643_axis)
|
||||
opt_dense_644 = self.dense_644(opt_gather_643)
|
||||
opt_tanh_645 = self.tanh_645(opt_dense_644)
|
||||
return opt_tanh_645
|
|
@ -19,7 +19,7 @@ from mindspore import load_checkpoint, load_param_into_net
|
|||
from mindspore.ops import BatchMatMul
|
||||
from mindspore import ops
|
||||
from mindspore import dtype as mstype
|
||||
from src.reader_albert_xxlarge import Reader_Albert
|
||||
from src.albert import Albert
|
||||
from src.reader_downstream import Reader_Downstream
|
||||
|
||||
|
||||
|
@ -33,15 +33,15 @@ class Reader(nn.Cell):
|
|||
"""init function"""
|
||||
super(Reader, self).__init__(auto_prefix=False)
|
||||
|
||||
self.encoder = Reader_Albert(batch_size)
|
||||
self.encoder = Albert(batch_size)
|
||||
param_dict = load_checkpoint(encoder_ck_file)
|
||||
not_load_params = load_param_into_net(self.encoder, param_dict)
|
||||
print(f"not loaded: {not_load_params}")
|
||||
print(f"reader albert not loaded params: {not_load_params}")
|
||||
|
||||
self.downstream = Reader_Downstream()
|
||||
param_dict = load_checkpoint(downstream_ck_file)
|
||||
not_load_params = load_param_into_net(self.downstream, param_dict)
|
||||
print(f"not loaded: {not_load_params}")
|
||||
print(f"reader downstream not loaded params: {not_load_params}")
|
||||
|
||||
self.bmm = BatchMatMul()
|
||||
|
||||
|
@ -49,7 +49,7 @@ class Reader(nn.Cell):
|
|||
context_mask, square_mask, packing_mask, cache_mask,
|
||||
para_start_mapping, sent_end_mapping):
|
||||
"""construct function"""
|
||||
state = self.encoder(attn_mask, input_ids, token_type_ids)
|
||||
state = self.encoder(input_ids, attn_mask, token_type_ids)
|
||||
|
||||
para_state = self.bmm(ops.Cast()(para_start_mapping, dst_type), ops.Cast()(state, dst_type)) # [B, 2, D]
|
||||
sent_state = self.bmm(ops.Cast()(sent_end_mapping, dst_type), ops.Cast()(state, dst_type)) # [B, max_sent, D]
|
||||
|
|
|
@ -1,263 +0,0 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""albert-xxlarge Model for reader"""
|
||||
|
||||
import numpy as np
|
||||
from mindspore import nn, ops
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import dtype as mstype
|
||||
|
||||
dst_type = mstype.float16
|
||||
dst_type2 = mstype.float32
|
||||
|
||||
|
||||
class LayerNorm(nn.Cell):
|
||||
"""LayerNorm layer"""
|
||||
def __init__(self, mul_7_w_shape, add_8_bias_shape):
|
||||
"""init function"""
|
||||
super(LayerNorm, self).__init__()
|
||||
self.reducemean_0 = P.ReduceMean(keep_dims=True)
|
||||
self.sub_1 = P.Sub()
|
||||
self.pow_2 = P.Pow()
|
||||
self.pow_2_input_weight = 2.0
|
||||
self.reducemean_3 = P.ReduceMean(keep_dims=True)
|
||||
self.add_4 = P.Add()
|
||||
self.add_4_bias = 9.999999960041972e-13
|
||||
self.sqrt_5 = P.Sqrt()
|
||||
self.div_6 = P.Div()
|
||||
self.mul_7 = P.Mul()
|
||||
self.mul_7_w = Parameter(Tensor(np.random.uniform(0, 1, mul_7_w_shape).astype(np.float32)), name=None)
|
||||
self.add_8 = P.Add()
|
||||
self.add_8_bias = Parameter(Tensor(np.random.uniform(0, 1, add_8_bias_shape).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_reducemean_0 = self.reducemean_0(x, -1)
|
||||
opt_sub_1 = self.sub_1(x, opt_reducemean_0)
|
||||
opt_pow_2 = self.pow_2(opt_sub_1, self.pow_2_input_weight)
|
||||
opt_reducemean_3 = self.reducemean_3(opt_pow_2, -1)
|
||||
opt_add_4 = self.add_4(opt_reducemean_3, self.add_4_bias)
|
||||
opt_sqrt_5 = self.sqrt_5(opt_add_4)
|
||||
opt_div_6 = self.div_6(opt_sub_1, opt_sqrt_5)
|
||||
opt_mul_7 = self.mul_7(opt_div_6, self.mul_7_w)
|
||||
opt_add_8 = self.add_8(opt_mul_7, self.add_8_bias)
|
||||
return opt_add_8
|
||||
|
||||
|
||||
class Linear(nn.Cell):
|
||||
"""Linear layer"""
|
||||
def __init__(self, matmul_0_weight_shape, add_1_bias_shape):
|
||||
"""init function"""
|
||||
super(Linear, self).__init__()
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, matmul_0_weight_shape).astype(np.float32)),
|
||||
name=None)
|
||||
self.add_1 = P.Add()
|
||||
self.add_1_bias = Parameter(Tensor(np.random.uniform(0, 1, add_1_bias_shape).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_0_w, dst_type))
|
||||
opt_add_1 = self.add_1(ops.Cast()(opt_matmul_0, dst_type2), self.add_1_bias)
|
||||
return opt_add_1
|
||||
|
||||
|
||||
class MultiHeadAttn(nn.Cell):
|
||||
"""Multi-head attention layer"""
|
||||
def __init__(self, batch_size):
|
||||
"""init function"""
|
||||
super(MultiHeadAttn, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)), name=None)
|
||||
self.matmul_1 = nn.MatMul()
|
||||
self.matmul_1_w = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)), name=None)
|
||||
self.matmul_2 = nn.MatMul()
|
||||
self.matmul_2_w = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)), name=None)
|
||||
self.add_3 = P.Add()
|
||||
self.add_3_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.add_4 = P.Add()
|
||||
self.add_4_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.add_5 = P.Add()
|
||||
self.add_5_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.reshape_6 = P.Reshape()
|
||||
self.reshape_6_shape = tuple([batch_size, 512, 64, 64])
|
||||
self.reshape_7 = P.Reshape()
|
||||
self.reshape_7_shape = tuple([batch_size, 512, 64, 64])
|
||||
self.reshape_8 = P.Reshape()
|
||||
self.reshape_8_shape = tuple([batch_size, 512, 64, 64])
|
||||
self.transpose_9 = P.Transpose()
|
||||
self.transpose_10 = P.Transpose()
|
||||
self.transpose_11 = P.Transpose()
|
||||
self.matmul_12 = nn.MatMul()
|
||||
self.div_13 = P.Div()
|
||||
self.div_13_w = 8.0
|
||||
self.add_14 = P.Add()
|
||||
self.softmax_15 = nn.Softmax(axis=3)
|
||||
self.matmul_16 = nn.MatMul()
|
||||
self.transpose_17 = P.Transpose()
|
||||
self.matmul_18 = P.MatMul()
|
||||
self.matmul_18_weight = Parameter(Tensor(np.random.uniform(0, 1, (64, 64, 4096)).astype(np.float32)), name=None)
|
||||
self.add_19 = P.Add()
|
||||
self.add_19_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_0_w, dst_type))
|
||||
opt_matmul_1 = self.matmul_1(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_1_w, dst_type))
|
||||
opt_matmul_2 = self.matmul_2(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_2_w, dst_type))
|
||||
opt_add_3 = self.add_3(ops.Cast()(opt_matmul_0, dst_type2), self.add_3_bias)
|
||||
opt_add_4 = self.add_4(ops.Cast()(opt_matmul_1, dst_type2), self.add_4_bias)
|
||||
opt_add_5 = self.add_5(ops.Cast()(opt_matmul_2, dst_type2), self.add_5_bias)
|
||||
opt_reshape_6 = self.reshape_6(opt_add_3, self.reshape_6_shape)
|
||||
opt_reshape_7 = self.reshape_7(opt_add_4, self.reshape_7_shape)
|
||||
opt_reshape_8 = self.reshape_8(opt_add_5, self.reshape_8_shape)
|
||||
opt_transpose_9 = self.transpose_9(opt_reshape_6, (0, 2, 1, 3))
|
||||
opt_transpose_10 = self.transpose_10(opt_reshape_7, (0, 2, 3, 1))
|
||||
opt_transpose_11 = self.transpose_11(opt_reshape_8, (0, 2, 1, 3))
|
||||
opt_matmul_12 = self.matmul_12(ops.Cast()(opt_transpose_9, dst_type), ops.Cast()(opt_transpose_10, dst_type))
|
||||
opt_div_13 = self.div_13(ops.Cast()(opt_matmul_12, dst_type2), ops.Cast()(self.div_13_w, dst_type2))
|
||||
opt_add_14 = self.add_14(opt_div_13, x0)
|
||||
opt_softmax_15 = self.softmax_15(opt_add_14)
|
||||
opt_matmul_16 = self.matmul_16(ops.Cast()(opt_softmax_15, dst_type), ops.Cast()(opt_transpose_11, dst_type))
|
||||
opt_transpose_17 = self.transpose_17(ops.Cast()(opt_matmul_16, dst_type2), (0, 2, 1, 3))
|
||||
opt_matmul_18 = self.matmul_18(ops.Cast()(opt_transpose_17, dst_type).view(self.batch_size * 512, -1),
|
||||
ops.Cast()(self.matmul_18_weight, dst_type).view(-1, 4096))\
|
||||
.view(self.batch_size, 512, 4096)
|
||||
|
||||
opt_add_19 = self.add_19(ops.Cast()(opt_matmul_18, dst_type2), self.add_19_bias)
|
||||
return opt_add_19
|
||||
|
||||
|
||||
class NewGeLU(nn.Cell):
|
||||
"""new gelu layer"""
|
||||
def __init__(self):
|
||||
"""init function"""
|
||||
super(NewGeLU, self).__init__()
|
||||
self.mul_0 = P.Mul()
|
||||
self.mul_0_w = 0.5
|
||||
self.pow_1 = P.Pow()
|
||||
self.pow_1_input_weight = 3.0
|
||||
self.mul_2 = P.Mul()
|
||||
self.mul_2_w = 0.044714998453855515
|
||||
self.add_3 = P.Add()
|
||||
self.mul_4 = P.Mul()
|
||||
self.mul_4_w = 0.7978845834732056
|
||||
self.tanh_5 = nn.Tanh()
|
||||
self.add_6 = P.Add()
|
||||
self.add_6_bias = 1.0
|
||||
self.mul_7 = P.Mul()
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_mul_0 = self.mul_0(x, self.mul_0_w)
|
||||
opt_pow_1 = self.pow_1(x, self.pow_1_input_weight)
|
||||
opt_mul_2 = self.mul_2(opt_pow_1, self.mul_2_w)
|
||||
opt_add_3 = self.add_3(x, opt_mul_2)
|
||||
opt_mul_4 = self.mul_4(opt_add_3, self.mul_4_w)
|
||||
opt_tanh_5 = self.tanh_5(opt_mul_4)
|
||||
opt_add_6 = self.add_6(opt_tanh_5, self.add_6_bias)
|
||||
opt_mul_7 = self.mul_7(opt_mul_0, opt_add_6)
|
||||
return opt_mul_7
|
||||
|
||||
|
||||
class TransformerLayer(nn.Cell):
|
||||
"""Transformer layer"""
|
||||
def __init__(self, batch_size, layernorm1_0_mul_7_w_shape, layernorm1_0_add_8_bias_shape,
|
||||
linear3_0_matmul_0_weight_shape, linear3_0_add_1_bias_shape, linear3_1_matmul_0_weight_shape,
|
||||
linear3_1_add_1_bias_shape):
|
||||
"""init function"""
|
||||
super(TransformerLayer, self).__init__()
|
||||
self.multiheadattn_0 = MultiHeadAttn(batch_size)
|
||||
self.add_0 = P.Add()
|
||||
self.layernorm1_0 = LayerNorm(mul_7_w_shape=layernorm1_0_mul_7_w_shape,
|
||||
add_8_bias_shape=layernorm1_0_add_8_bias_shape)
|
||||
self.linear3_0 = Linear(matmul_0_weight_shape=linear3_0_matmul_0_weight_shape,
|
||||
add_1_bias_shape=linear3_0_add_1_bias_shape)
|
||||
self.newgelu2_0 = NewGeLU()
|
||||
self.linear3_1 = Linear(matmul_0_weight_shape=linear3_1_matmul_0_weight_shape,
|
||||
add_1_bias_shape=linear3_1_add_1_bias_shape)
|
||||
self.add_1 = P.Add()
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
multiheadattn_0_opt = self.multiheadattn_0(x, x0)
|
||||
opt_add_0 = self.add_0(x, multiheadattn_0_opt)
|
||||
layernorm1_0_opt = self.layernorm1_0(opt_add_0)
|
||||
linear3_0_opt = self.linear3_0(layernorm1_0_opt)
|
||||
newgelu2_0_opt = self.newgelu2_0(linear3_0_opt)
|
||||
linear3_1_opt = self.linear3_1(newgelu2_0_opt)
|
||||
opt_add_1 = self.add_1(linear3_1_opt, layernorm1_0_opt)
|
||||
return opt_add_1
|
||||
|
||||
|
||||
class Reader_Albert(nn.Cell):
|
||||
"""Albert model for reader"""
|
||||
def __init__(self, batch_size):
|
||||
"""init function"""
|
||||
super(Reader_Albert, self).__init__()
|
||||
self.expanddims_0 = P.ExpandDims()
|
||||
self.expanddims_0_axis = 1
|
||||
self.expanddims_3 = P.ExpandDims()
|
||||
self.expanddims_3_axis = 2
|
||||
self.cast_5 = P.Cast()
|
||||
self.cast_5_to = mstype.float32
|
||||
self.sub_7 = P.Sub()
|
||||
self.sub_7_bias = 1.0
|
||||
self.mul_9 = P.Mul()
|
||||
self.mul_9_w = -10000.0
|
||||
self.gather_1_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (30005, 128)).astype(np.float32)),
|
||||
name=None)
|
||||
self.gather_1_axis = 0
|
||||
self.gather_1 = P.Gather()
|
||||
self.gather_2_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (2, 128)).astype(np.float32)), name=None)
|
||||
self.gather_2_axis = 0
|
||||
self.gather_2 = P.Gather()
|
||||
self.add_4 = P.Add()
|
||||
self.add_6 = P.Add()
|
||||
self.add_6_bias = Parameter(Tensor(np.random.uniform(0, 1, (1, 512, 128)).astype(np.float32)), name=None)
|
||||
self.layernorm1_0 = LayerNorm(mul_7_w_shape=(128,), add_8_bias_shape=(128,))
|
||||
self.linear3_0 = Linear(matmul_0_weight_shape=(128, 4096), add_1_bias_shape=(4096,))
|
||||
self.module34_0 = TransformerLayer(batch_size,
|
||||
layernorm1_0_mul_7_w_shape=(4096,),
|
||||
layernorm1_0_add_8_bias_shape=(4096,),
|
||||
linear3_0_matmul_0_weight_shape=(4096, 16384),
|
||||
linear3_0_add_1_bias_shape=(16384,),
|
||||
linear3_1_matmul_0_weight_shape=(16384, 4096),
|
||||
linear3_1_add_1_bias_shape=(4096,))
|
||||
self.layernorm1_1 = LayerNorm(mul_7_w_shape=(4096,), add_8_bias_shape=(4096,))
|
||||
|
||||
def construct(self, x, x0, x1):
|
||||
"""construct function"""
|
||||
opt_expanddims_0 = self.expanddims_0(x, self.expanddims_0_axis)
|
||||
opt_expanddims_3 = self.expanddims_3(opt_expanddims_0, self.expanddims_3_axis)
|
||||
opt_cast_5 = self.cast_5(opt_expanddims_3, self.cast_5_to)
|
||||
opt_sub_7 = self.sub_7(self.sub_7_bias, opt_cast_5)
|
||||
opt_mul_9 = self.mul_9(opt_sub_7, self.mul_9_w)
|
||||
opt_gather_1_axis = self.gather_1_axis
|
||||
opt_gather_1 = self.gather_1(self.gather_1_input_weight, x0, opt_gather_1_axis)
|
||||
opt_gather_2_axis = self.gather_2_axis
|
||||
opt_gather_2 = self.gather_2(self.gather_2_input_weight, x1, opt_gather_2_axis)
|
||||
opt_add_4 = self.add_4(opt_gather_1, opt_gather_2)
|
||||
opt_add_6 = self.add_6(opt_add_4, self.add_6_bias)
|
||||
layernorm1_0_opt = self.layernorm1_0(opt_add_6)
|
||||
linear3_0_opt = self.linear3_0(layernorm1_0_opt)
|
||||
module34_0_opt = self.module34_0(linear3_0_opt, opt_mul_9)
|
||||
out = self.layernorm1_1(module34_0_opt)
|
||||
for _ in range(11):
|
||||
out = self.module34_0(out, opt_mul_9)
|
||||
out = self.layernorm1_1(out)
|
||||
return out
|
|
@ -25,138 +25,114 @@ dst_type = mstype.float16
|
|||
dst_type2 = mstype.float32
|
||||
|
||||
|
||||
class Module15(nn.Cell):
|
||||
class Linear(nn.Cell):
|
||||
"""module of reader downstream"""
|
||||
def __init__(self, matmul_0_weight_shape, add_1_bias_shape):
|
||||
def __init__(self, linear_weight_shape, linear_bias_shape):
|
||||
"""init function"""
|
||||
super(Module15, self).__init__()
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, matmul_0_weight_shape).astype(np.float32)),
|
||||
name=None)
|
||||
self.add_1 = P.Add()
|
||||
self.add_1_bias = Parameter(Tensor(np.random.uniform(0, 1, add_1_bias_shape).astype(np.float32)), name=None)
|
||||
self.relu_2 = nn.ReLU()
|
||||
super(Linear, self).__init__()
|
||||
self.matmul = nn.MatMul()
|
||||
self.matmul_w = Parameter(Tensor(np.random.uniform(0, 1, linear_weight_shape).astype(np.float32)),
|
||||
name=None)
|
||||
self.add = P.Add()
|
||||
self.add_bias = Parameter(Tensor(np.random.uniform(0, 1, linear_bias_shape).astype(np.float32)), name=None)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def construct(self, x):
|
||||
def construct(self, hidden_state):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_0_w, dst_type))
|
||||
opt_add_1 = self.add_1(ops.Cast()(opt_matmul_0, dst_type2), self.add_1_bias)
|
||||
opt_relu_2 = self.relu_2(opt_add_1)
|
||||
return opt_relu_2
|
||||
output = self.matmul(ops.Cast()(hidden_state, dst_type), ops.Cast()(self.matmul_w, dst_type))
|
||||
output = self.add(ops.Cast()(output, dst_type2), self.add_bias)
|
||||
output = self.relu(output)
|
||||
return output
|
||||
|
||||
|
||||
class NormModule(nn.Cell):
|
||||
class BertLayerNorm(nn.Cell):
|
||||
"""Normalization module of reader downstream"""
|
||||
def __init__(self, mul_8_w_shape, add_9_bias_shape):
|
||||
def __init__(self, bert_layer_norm_weight_shape, bert_layer_norm_bias_shape, eps=1e-12):
|
||||
"""init function"""
|
||||
super(NormModule, self).__init__()
|
||||
self.reducemean_0 = P.ReduceMean(keep_dims=True)
|
||||
self.sub_1 = P.Sub()
|
||||
self.sub_2 = P.Sub()
|
||||
self.pow_3 = P.Pow()
|
||||
self.pow_3_input_weight = 2.0
|
||||
self.reducemean_4 = P.ReduceMean(keep_dims=True)
|
||||
self.add_5 = P.Add()
|
||||
self.add_5_bias = 9.999999960041972e-13
|
||||
self.sqrt_6 = P.Sqrt()
|
||||
self.div_7 = P.Div()
|
||||
self.mul_8 = P.Mul()
|
||||
self.mul_8_w = Parameter(Tensor(np.random.uniform(0, 1, mul_8_w_shape).astype(np.float32)), name=None)
|
||||
self.add_9 = P.Add()
|
||||
self.add_9_bias = Parameter(Tensor(np.random.uniform(0, 1, add_9_bias_shape).astype(np.float32)), name=None)
|
||||
super(BertLayerNorm, self).__init__()
|
||||
self.reducemean = P.ReduceMean(keep_dims=True)
|
||||
self.sub = P.Sub()
|
||||
self.pow = P.Pow()
|
||||
self.add = P.Add()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.div = P.Div()
|
||||
self.mul = P.Mul()
|
||||
self.variance_epsilon = eps
|
||||
self.bert_layer_norm_weight = Parameter(Tensor(np.random.uniform(0, 1, bert_layer_norm_weight_shape)
|
||||
.astype(np.float32)), name=None)
|
||||
self.bert_layer_norm_bias = Parameter(Tensor(np.random.uniform(0, 1, bert_layer_norm_bias_shape)
|
||||
.astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_reducemean_0 = self.reducemean_0(x, -1)
|
||||
opt_sub_1 = self.sub_1(x, opt_reducemean_0)
|
||||
opt_sub_2 = self.sub_2(x, opt_reducemean_0)
|
||||
opt_pow_3 = self.pow_3(opt_sub_1, self.pow_3_input_weight)
|
||||
opt_reducemean_4 = self.reducemean_4(opt_pow_3, -1)
|
||||
opt_add_5 = self.add_5(opt_reducemean_4, self.add_5_bias)
|
||||
opt_sqrt_6 = self.sqrt_6(opt_add_5)
|
||||
opt_div_7 = self.div_7(opt_sub_2, opt_sqrt_6)
|
||||
opt_mul_8 = self.mul_8(self.mul_8_w, opt_div_7)
|
||||
opt_add_9 = self.add_9(opt_mul_8, self.add_9_bias)
|
||||
return opt_add_9
|
||||
u = self.reducemean(x, -1)
|
||||
s = self.reducemean(self.pow(self.sub(x, u), 2), -1)
|
||||
x = self.div(self.sub(x, u), self.sqrt(self.add(s, self.variance_epsilon)))
|
||||
output = self.mul(self.bert_layer_norm_weight, x)
|
||||
output = self.add(output, self.bert_layer_norm_bias)
|
||||
return output
|
||||
|
||||
|
||||
class Module16(nn.Cell):
|
||||
class SupportingOutputLayer(nn.Cell):
|
||||
"""module of reader downstream"""
|
||||
def __init__(self, module15_0_matmul_0_weight_shape, module15_0_add_1_bias_shape, normmodule_0_mul_8_w_shape,
|
||||
normmodule_0_add_9_bias_shape):
|
||||
def __init__(self, linear_1_weight_shape, linear_1_bias_shape, bert_layer_norm_weight_shape,
|
||||
bert_layer_norm_bias_shape):
|
||||
"""init function"""
|
||||
super(Module16, self).__init__()
|
||||
self.module15_0 = Module15(matmul_0_weight_shape=module15_0_matmul_0_weight_shape,
|
||||
add_1_bias_shape=module15_0_add_1_bias_shape)
|
||||
self.normmodule_0 = NormModule(mul_8_w_shape=normmodule_0_mul_8_w_shape,
|
||||
add_9_bias_shape=normmodule_0_add_9_bias_shape)
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, (8192, 1)).astype(np.float32)), name=None)
|
||||
super(SupportingOutputLayer, self).__init__()
|
||||
self.linear_1 = Linear(linear_weight_shape=linear_1_weight_shape,
|
||||
linear_bias_shape=linear_1_bias_shape)
|
||||
self.bert_layer_norm = BertLayerNorm(bert_layer_norm_weight_shape=bert_layer_norm_weight_shape,
|
||||
bert_layer_norm_bias_shape=bert_layer_norm_bias_shape)
|
||||
self.matmul = nn.MatMul()
|
||||
self.matmul_w = Parameter(Tensor(np.random.uniform(0, 1, (8192, 1)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
module15_0_opt = self.module15_0(x)
|
||||
normmodule_0_opt = self.normmodule_0(module15_0_opt)
|
||||
opt_matmul_0 = self.matmul_0(ops.Cast()(normmodule_0_opt, dst_type), ops.Cast()(self.matmul_0_w, dst_type))
|
||||
return ops.Cast()(opt_matmul_0, dst_type2)
|
||||
output = self.linear_1(x)
|
||||
output = self.bert_layer_norm(output)
|
||||
output = self.matmul(ops.Cast()(output, dst_type), ops.Cast()(self.matmul_w, dst_type))
|
||||
return ops.Cast()(output, dst_type2)
|
||||
|
||||
|
||||
class Module17(nn.Cell):
|
||||
class PosOutputLayer(nn.Cell):
|
||||
"""module of reader downstream"""
|
||||
def __init__(self, module15_0_matmul_0_weight_shape, module15_0_add_1_bias_shape, normmodule_0_mul_8_w_shape,
|
||||
normmodule_0_add_9_bias_shape):
|
||||
def __init__(self, linear_weight_shape, linear_bias_shape, bert_layer_norm_weight_shape,
|
||||
bert_layer_norm_bias_shape):
|
||||
"""init function"""
|
||||
super(Module17, self).__init__()
|
||||
self.module15_0 = Module15(matmul_0_weight_shape=module15_0_matmul_0_weight_shape,
|
||||
add_1_bias_shape=module15_0_add_1_bias_shape)
|
||||
self.normmodule_0 = NormModule(mul_8_w_shape=normmodule_0_mul_8_w_shape,
|
||||
add_9_bias_shape=normmodule_0_add_9_bias_shape)
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, (4096, 1)).astype(np.float32)), name=None)
|
||||
self.add_1 = P.Add()
|
||||
self.add_1_bias = Parameter(Tensor(np.random.uniform(0, 1, (1,)).astype(np.float32)), name=None)
|
||||
super(PosOutputLayer, self).__init__()
|
||||
self.linear_1 = Linear(linear_weight_shape=linear_weight_shape,
|
||||
linear_bias_shape=linear_bias_shape)
|
||||
self.bert_layer_norm = BertLayerNorm(bert_layer_norm_weight_shape=bert_layer_norm_weight_shape,
|
||||
bert_layer_norm_bias_shape=bert_layer_norm_bias_shape)
|
||||
self.matmul = nn.MatMul()
|
||||
self.linear_2_weight = Parameter(Tensor(np.random.uniform(0, 1, (4096, 1)).astype(np.float32)), name=None)
|
||||
self.add = P.Add()
|
||||
self.linear_2_bias = Parameter(Tensor(np.random.uniform(0, 1, (1,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
def construct(self, state):
|
||||
"""construct function"""
|
||||
module15_0_opt = self.module15_0(x)
|
||||
normmodule_0_opt = self.normmodule_0(module15_0_opt)
|
||||
opt_matmul_0 = self.matmul_0(ops.Cast()(normmodule_0_opt, dst_type), ops.Cast()(self.matmul_0_w, dst_type))
|
||||
opt_add_1 = self.add_1(ops.Cast()(opt_matmul_0, dst_type2), self.add_1_bias)
|
||||
return opt_add_1
|
||||
output = self.linear_1(state)
|
||||
output = self.bert_layer_norm(output)
|
||||
output = self.matmul(ops.Cast()(output, dst_type), ops.Cast()(self.linear_2_weight, dst_type))
|
||||
output = self.add(ops.Cast()(output, dst_type2), self.linear_2_bias)
|
||||
return output
|
||||
|
||||
|
||||
class Module5(nn.Cell):
|
||||
class MaskInvalidPos(nn.Cell):
|
||||
"""module of reader downstream"""
|
||||
def __init__(self):
|
||||
"""init function"""
|
||||
super(Module5, self).__init__()
|
||||
self.sub_0 = P.Sub()
|
||||
self.sub_0_bias = 1.0
|
||||
self.mul_1 = P.Mul()
|
||||
self.mul_1_w = 1.0000000150474662e+30
|
||||
super(MaskInvalidPos, self).__init__()
|
||||
self.squeeze = P.Squeeze(2)
|
||||
self.sub = P.Sub()
|
||||
self.mul = P.Mul()
|
||||
|
||||
def construct(self, x):
|
||||
def construct(self, pos_pred, context_mask):
|
||||
"""construct function"""
|
||||
opt_sub_0 = self.sub_0(self.sub_0_bias, x)
|
||||
opt_mul_1 = self.mul_1(opt_sub_0, self.mul_1_w)
|
||||
return opt_mul_1
|
||||
|
||||
|
||||
class Module10(nn.Cell):
|
||||
"""module of reader downstream"""
|
||||
def __init__(self):
|
||||
"""init function"""
|
||||
super(Module10, self).__init__()
|
||||
self.squeeze_0 = P.Squeeze(2)
|
||||
self.module5_0 = Module5()
|
||||
self.sub_1 = P.Sub()
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
opt_squeeze_0 = self.squeeze_0(x)
|
||||
module5_0_opt = self.module5_0(x0)
|
||||
opt_sub_1 = self.sub_1(opt_squeeze_0, module5_0_opt)
|
||||
return opt_sub_1
|
||||
output = self.squeeze(pos_pred)
|
||||
invalid_pos_mask = self.mul(self.sub(1.0, context_mask), 1e30)
|
||||
output = self.sub(output, invalid_pos_mask)
|
||||
return output
|
||||
|
||||
|
||||
class Reader_Downstream(nn.Cell):
|
||||
|
@ -164,50 +140,52 @@ class Reader_Downstream(nn.Cell):
|
|||
def __init__(self):
|
||||
"""init function"""
|
||||
super(Reader_Downstream, self).__init__()
|
||||
self.module16_0 = Module16(module15_0_matmul_0_weight_shape=(4096, 8192),
|
||||
module15_0_add_1_bias_shape=(8192,),
|
||||
normmodule_0_mul_8_w_shape=(8192,),
|
||||
normmodule_0_add_9_bias_shape=(8192,))
|
||||
self.add_74 = P.Add()
|
||||
self.add_74_bias = Parameter(Tensor(np.random.uniform(0, 1, (1,)).astype(np.float32)), name=None)
|
||||
self.module16_1 = Module16(module15_0_matmul_0_weight_shape=(4096, 8192),
|
||||
module15_0_add_1_bias_shape=(8192,),
|
||||
normmodule_0_mul_8_w_shape=(8192,),
|
||||
normmodule_0_add_9_bias_shape=(8192,))
|
||||
self.add_75 = P.Add()
|
||||
self.add_75_bias = Parameter(Tensor(np.random.uniform(0, 1, (1,)).astype(np.float32)), name=None)
|
||||
self.module17_0 = Module17(module15_0_matmul_0_weight_shape=(4096, 4096),
|
||||
module15_0_add_1_bias_shape=(4096,),
|
||||
normmodule_0_mul_8_w_shape=(4096,),
|
||||
normmodule_0_add_9_bias_shape=(4096,))
|
||||
self.module10_0 = Module10()
|
||||
self.module17_1 = Module17(module15_0_matmul_0_weight_shape=(4096, 4096),
|
||||
module15_0_add_1_bias_shape=(4096,),
|
||||
normmodule_0_mul_8_w_shape=(4096,),
|
||||
normmodule_0_add_9_bias_shape=(4096,))
|
||||
self.module10_1 = Module10()
|
||||
self.gather_6_input_weight = Tensor(np.array(0))
|
||||
self.gather_6_axis = 1
|
||||
self.gather_6 = P.Gather()
|
||||
self.dense_13 = nn.Dense(in_channels=4096, out_channels=4096, has_bias=True)
|
||||
self.relu_18 = nn.ReLU()
|
||||
self.normmodule_0 = NormModule(mul_8_w_shape=(4096,), add_9_bias_shape=(4096,))
|
||||
self.dense_73 = nn.Dense(in_channels=4096, out_channels=3, has_bias=True)
|
||||
|
||||
def construct(self, x, x0, x1, x2):
|
||||
self.add = P.Add()
|
||||
self.para_bias = Parameter(Tensor(np.random.uniform(0, 1, (1,)).astype(np.float32)), name=None)
|
||||
self.para_output_layer = SupportingOutputLayer(linear_1_weight_shape=(4096, 8192),
|
||||
linear_1_bias_shape=(8192,),
|
||||
bert_layer_norm_weight_shape=(8192,),
|
||||
bert_layer_norm_bias_shape=(8192,))
|
||||
self.sent_bias = Parameter(Tensor(np.random.uniform(0, 1, (1,)).astype(np.float32)), name=None)
|
||||
self.sent_output_layer = SupportingOutputLayer(linear_1_weight_shape=(4096, 8192),
|
||||
linear_1_bias_shape=(8192,),
|
||||
bert_layer_norm_weight_shape=(8192,),
|
||||
bert_layer_norm_bias_shape=(8192,))
|
||||
|
||||
self.start_output_layer = PosOutputLayer(linear_weight_shape=(4096, 4096),
|
||||
linear_bias_shape=(4096,),
|
||||
bert_layer_norm_weight_shape=(4096,),
|
||||
bert_layer_norm_bias_shape=(4096,))
|
||||
self.end_output_layer = PosOutputLayer(linear_weight_shape=(4096, 4096),
|
||||
linear_bias_shape=(4096,),
|
||||
bert_layer_norm_weight_shape=(4096,),
|
||||
bert_layer_norm_bias_shape=(4096,))
|
||||
self.mask_invalid_pos = MaskInvalidPos()
|
||||
self.gather_input_weight = Tensor(np.array(0))
|
||||
self.gather = P.Gather()
|
||||
self.type_linear_1 = nn.Dense(in_channels=4096, out_channels=4096, has_bias=True)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
self.bert_layer_norm = BertLayerNorm(bert_layer_norm_weight_shape=(4096,), bert_layer_norm_bias_shape=(4096,))
|
||||
self.type_linear_2 = nn.Dense(in_channels=4096, out_channels=3, has_bias=True)
|
||||
|
||||
def construct(self, para_state, sent_state, state, context_mask):
|
||||
"""construct function"""
|
||||
module16_0_opt = self.module16_0(x)
|
||||
opt_add_74 = self.add_74(module16_0_opt, self.add_74_bias)
|
||||
module16_1_opt = self.module16_1(x0)
|
||||
opt_add_75 = self.add_75(module16_1_opt, self.add_75_bias)
|
||||
module17_0_opt = self.module17_0(x1)
|
||||
opt_module10_0 = self.module10_0(module17_0_opt, x2)
|
||||
module17_1_opt = self.module17_1(x1)
|
||||
opt_module10_1 = self.module10_1(module17_1_opt, x2)
|
||||
opt_gather_6_axis = self.gather_6_axis
|
||||
opt_gather_6 = self.gather_6(x1, self.gather_6_input_weight, opt_gather_6_axis)
|
||||
opt_dense_13 = self.dense_13(opt_gather_6)
|
||||
opt_relu_18 = self.relu_18(opt_dense_13)
|
||||
normmodule_0_opt = self.normmodule_0(opt_relu_18)
|
||||
opt_dense_73 = self.dense_73(normmodule_0_opt)
|
||||
return opt_dense_73, opt_module10_0, opt_module10_1, opt_add_74, opt_add_75
|
||||
para_logit = self.para_output_layer(para_state)
|
||||
para_logit = self.add(para_logit, self.para_bias)
|
||||
sent_logit = self.sent_output_layer(sent_state)
|
||||
sent_logit = self.add(sent_logit, self.sent_bias)
|
||||
|
||||
start = self.start_output_layer(state)
|
||||
start = self.mask_invalid_pos(start, context_mask)
|
||||
|
||||
end = self.end_output_layer(state)
|
||||
end = self.mask_invalid_pos(end, context_mask)
|
||||
|
||||
cls_emb = self.gather(state, self.gather_input_weight, 1)
|
||||
q_type = self.type_linear_1(cls_emb)
|
||||
q_type = self.relu(q_type)
|
||||
q_type = self.bert_layer_norm(q_type)
|
||||
q_type = self.type_linear_2(q_type)
|
||||
return q_type, start, end, para_logit, sent_logit
|
||||
|
|
|
@ -18,8 +18,8 @@ from collections import defaultdict
|
|||
import random
|
||||
from time import time
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from transformers import AlbertTokenizer
|
||||
|
||||
|
@ -33,11 +33,11 @@ from src.reader import Reader
|
|||
|
||||
def read(args):
|
||||
"""reader function"""
|
||||
db_file = args.wiki_db_file
|
||||
db_file = args.wiki_db_path
|
||||
reader_feature_file = args.reader_feature_file
|
||||
reader_example_file = args.reader_example_file
|
||||
encoder_ck_file = args.reader_encoder_ck_file
|
||||
downstream_ck_file = args.reader_downstream_ck_file
|
||||
encoder_ck_file = args.reader_encoder_ck_path
|
||||
downstream_ck_file = args.reader_downstream_ck_path
|
||||
albert_model_path = args.albert_model_path
|
||||
reader_result_file = args.reader_result_file
|
||||
seed = args.seed
|
||||
|
|
|
@ -1,276 +0,0 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""albert-xxlarge Model for reranker"""
|
||||
|
||||
import numpy as np
|
||||
from mindspore import nn, ops
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import dtype as mstype
|
||||
|
||||
|
||||
dst_type = mstype.float16
|
||||
dst_type2 = mstype.float32
|
||||
|
||||
|
||||
class LayerNorm(nn.Cell):
|
||||
"""LayerNorm layer"""
|
||||
def __init__(self, passthrough_w_0, passthrough_w_1):
|
||||
"""init function"""
|
||||
super(LayerNorm, self).__init__()
|
||||
self.reducemean_0 = P.ReduceMean(keep_dims=True)
|
||||
self.sub_1 = P.Sub()
|
||||
self.pow_2 = P.Pow()
|
||||
self.pow_2_input_weight = 2.0
|
||||
self.reducemean_3 = P.ReduceMean(keep_dims=True)
|
||||
self.add_4 = P.Add()
|
||||
self.add_4_bias = 9.999999960041972e-13
|
||||
self.sqrt_5 = P.Sqrt()
|
||||
self.div_6 = P.Div()
|
||||
self.mul_7 = P.Mul()
|
||||
self.mul_7_w = passthrough_w_0
|
||||
self.add_8 = P.Add()
|
||||
self.add_8_bias = passthrough_w_1
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_reducemean_0 = self.reducemean_0(x, -1)
|
||||
opt_sub_1 = self.sub_1(x, opt_reducemean_0)
|
||||
opt_pow_2 = self.pow_2(opt_sub_1, self.pow_2_input_weight)
|
||||
opt_reducemean_3 = self.reducemean_3(opt_pow_2, -1)
|
||||
opt_add_4 = self.add_4(opt_reducemean_3, self.add_4_bias)
|
||||
opt_sqrt_5 = self.sqrt_5(opt_add_4)
|
||||
opt_div_6 = self.div_6(opt_sub_1, opt_sqrt_5)
|
||||
opt_mul_7 = self.mul_7(opt_div_6, self.mul_7_w)
|
||||
opt_add_8 = self.add_8(opt_mul_7, self.add_8_bias)
|
||||
return opt_add_8
|
||||
|
||||
|
||||
class Linear(nn.Cell):
|
||||
"""Linear layer"""
|
||||
def __init__(self, matmul_0_w_shape, passthrough_w_0):
|
||||
"""init function"""
|
||||
super(Linear, self).__init__()
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, matmul_0_w_shape).astype(np.float32)), name=None)
|
||||
self.add_1 = P.Add()
|
||||
self.add_1_bias = passthrough_w_0
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_0_w, dst_type))
|
||||
opt_add_1 = self.add_1(ops.Cast()(opt_matmul_0, dst_type2), self.add_1_bias)
|
||||
return opt_add_1
|
||||
|
||||
|
||||
class MultiHeadAttn(nn.Cell):
|
||||
"""Multi-head attention layer"""
|
||||
def __init__(self, batch_size, passthrough_w_0, passthrough_w_1, passthrough_w_2):
|
||||
"""init function"""
|
||||
super(MultiHeadAttn, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)), name=None)
|
||||
self.matmul_1 = nn.MatMul()
|
||||
self.matmul_1_w = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)), name=None)
|
||||
self.matmul_2 = nn.MatMul()
|
||||
self.matmul_2_w = Parameter(Tensor(np.random.uniform(0, 1, (4096, 4096)).astype(np.float32)), name=None)
|
||||
self.add_3 = P.Add()
|
||||
self.add_3_bias = passthrough_w_0
|
||||
self.add_4 = P.Add()
|
||||
self.add_4_bias = passthrough_w_1
|
||||
self.add_5 = P.Add()
|
||||
self.add_5_bias = passthrough_w_2
|
||||
self.reshape_6 = P.Reshape()
|
||||
self.reshape_6_shape = tuple([batch_size, 512, 64, 64])
|
||||
self.reshape_7 = P.Reshape()
|
||||
self.reshape_7_shape = tuple([batch_size, 512, 64, 64])
|
||||
self.reshape_8 = P.Reshape()
|
||||
self.reshape_8_shape = tuple([batch_size, 512, 64, 64])
|
||||
self.transpose_9 = P.Transpose()
|
||||
self.transpose_10 = P.Transpose()
|
||||
self.transpose_11 = P.Transpose()
|
||||
self.matmul_12 = nn.MatMul()
|
||||
self.div_13 = P.Div()
|
||||
self.div_13_w = 8.0
|
||||
self.add_14 = P.Add()
|
||||
self.softmax_15 = nn.Softmax(axis=3)
|
||||
self.matmul_16 = nn.MatMul()
|
||||
self.transpose_17 = P.Transpose()
|
||||
self.matmul_18 = P.MatMul()
|
||||
self.matmul_18_weight = Parameter(Tensor(np.random.uniform(0, 1, (64, 64, 4096)).astype(np.float32)), name=None)
|
||||
self.add_19 = P.Add()
|
||||
self.add_19_bias = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_0_w, dst_type))
|
||||
opt_matmul_1 = self.matmul_1(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_1_w, dst_type))
|
||||
opt_matmul_2 = self.matmul_2(ops.Cast()(x, dst_type), ops.Cast()(self.matmul_2_w, dst_type))
|
||||
opt_add_3 = self.add_3(ops.Cast()(opt_matmul_0, dst_type2), self.add_3_bias)
|
||||
opt_add_4 = self.add_4(ops.Cast()(opt_matmul_1, dst_type2), self.add_4_bias)
|
||||
opt_add_5 = self.add_5(ops.Cast()(opt_matmul_2, dst_type2), self.add_5_bias)
|
||||
opt_reshape_6 = self.reshape_6(opt_add_3, self.reshape_6_shape)
|
||||
opt_reshape_7 = self.reshape_7(opt_add_4, self.reshape_7_shape)
|
||||
opt_reshape_8 = self.reshape_8(opt_add_5, self.reshape_8_shape)
|
||||
opt_transpose_9 = self.transpose_9(opt_reshape_6, (0, 2, 1, 3))
|
||||
opt_transpose_10 = self.transpose_10(opt_reshape_7, (0, 2, 3, 1))
|
||||
opt_transpose_11 = self.transpose_11(opt_reshape_8, (0, 2, 1, 3))
|
||||
opt_matmul_12 = self.matmul_12(ops.Cast()(opt_transpose_9, dst_type), ops.Cast()(opt_transpose_10, dst_type))
|
||||
opt_div_13 = self.div_13(ops.Cast()(opt_matmul_12, dst_type2), ops.Cast()(self.div_13_w, dst_type2))
|
||||
opt_add_14 = self.add_14(opt_div_13, x0)
|
||||
opt_softmax_15 = self.softmax_15(opt_add_14)
|
||||
opt_matmul_16 = self.matmul_16(ops.Cast()(opt_softmax_15, dst_type), ops.Cast()(opt_transpose_11, dst_type))
|
||||
opt_transpose_17 = self.transpose_17(ops.Cast()(opt_matmul_16, dst_type2), (0, 2, 1, 3))
|
||||
opt_matmul_18 = self.matmul_18(ops.Cast()(opt_transpose_17, dst_type).view(self.batch_size * 512, -1),
|
||||
ops.Cast()(self.matmul_18_weight, dst_type).view(-1, 4096))\
|
||||
.view(self.batch_size, 512, 4096)
|
||||
opt_add_19 = self.add_19(ops.Cast()(opt_matmul_18, dst_type2), self.add_19_bias)
|
||||
return opt_add_19
|
||||
|
||||
|
||||
class NewGeLU(nn.Cell):
|
||||
"""Gelu layer"""
|
||||
def __init__(self):
|
||||
"""init function"""
|
||||
super(NewGeLU, self).__init__()
|
||||
self.mul_0 = P.Mul()
|
||||
self.mul_0_w = 0.5
|
||||
self.pow_1 = P.Pow()
|
||||
self.pow_1_input_weight = 3.0
|
||||
self.mul_2 = P.Mul()
|
||||
self.mul_2_w = 0.044714998453855515
|
||||
self.add_3 = P.Add()
|
||||
self.mul_4 = P.Mul()
|
||||
self.mul_4_w = 0.7978845834732056
|
||||
self.tanh_5 = nn.Tanh()
|
||||
self.add_6 = P.Add()
|
||||
self.add_6_bias = 1.0
|
||||
self.mul_7 = P.Mul()
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_mul_0 = self.mul_0(x, self.mul_0_w)
|
||||
opt_pow_1 = self.pow_1(x, self.pow_1_input_weight)
|
||||
opt_mul_2 = self.mul_2(opt_pow_1, self.mul_2_w)
|
||||
opt_add_3 = self.add_3(x, opt_mul_2)
|
||||
opt_mul_4 = self.mul_4(opt_add_3, self.mul_4_w)
|
||||
opt_tanh_5 = self.tanh_5(opt_mul_4)
|
||||
opt_add_6 = self.add_6(opt_tanh_5, self.add_6_bias)
|
||||
opt_mul_7 = self.mul_7(opt_mul_0, opt_add_6)
|
||||
return opt_mul_7
|
||||
|
||||
|
||||
class TransformerLayerWithLayerNorm(nn.Cell):
|
||||
"""Transformer layer with LayerNOrm"""
|
||||
def __init__(self, batch_size, linear3_0_matmul_0_w_shape, linear3_1_matmul_0_w_shape, passthrough_w_0,
|
||||
passthrough_w_1, passthrough_w_2, passthrough_w_3, passthrough_w_4, passthrough_w_5, passthrough_w_6):
|
||||
"""init function"""
|
||||
super(TransformerLayerWithLayerNorm, self).__init__()
|
||||
self.multiheadattn_0 = MultiHeadAttn(batch_size=batch_size,
|
||||
passthrough_w_0=passthrough_w_0,
|
||||
passthrough_w_1=passthrough_w_1,
|
||||
passthrough_w_2=passthrough_w_2)
|
||||
self.add_0 = P.Add()
|
||||
self.layernorm1_0 = LayerNorm(passthrough_w_0=passthrough_w_3, passthrough_w_1=passthrough_w_4)
|
||||
self.linear3_0 = Linear(matmul_0_w_shape=linear3_0_matmul_0_w_shape, passthrough_w_0=passthrough_w_5)
|
||||
self.newgelu2_0 = NewGeLU()
|
||||
self.linear3_1 = Linear(matmul_0_w_shape=linear3_1_matmul_0_w_shape, passthrough_w_0=passthrough_w_6)
|
||||
self.add_1 = P.Add()
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
multiheadattn_0_opt = self.multiheadattn_0(x, x0)
|
||||
opt_add_0 = self.add_0(x, multiheadattn_0_opt)
|
||||
layernorm1_0_opt = self.layernorm1_0(opt_add_0)
|
||||
linear3_0_opt = self.linear3_0(layernorm1_0_opt)
|
||||
newgelu2_0_opt = self.newgelu2_0(linear3_0_opt)
|
||||
linear3_1_opt = self.linear3_1(newgelu2_0_opt)
|
||||
opt_add_1 = self.add_1(linear3_1_opt, layernorm1_0_opt)
|
||||
return opt_add_1
|
||||
|
||||
|
||||
class Rerank_Albert(nn.Cell):
|
||||
"""Albert model for rerank"""
|
||||
def __init__(self, batch_size):
|
||||
"""init function"""
|
||||
super(Rerank_Albert, self).__init__()
|
||||
self.passthrough_w_0 = Parameter(Tensor(np.random.uniform(0, 1, (128,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_1 = Parameter(Tensor(np.random.uniform(0, 1, (128,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_2 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_3 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_4 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_5 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_6 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_7 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_8 = Parameter(Tensor(np.random.uniform(0, 1, (16384,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_9 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_10 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.passthrough_w_11 = Parameter(Tensor(np.random.uniform(0, 1, (4096,)).astype(np.float32)), name=None)
|
||||
self.expanddims_0 = P.ExpandDims()
|
||||
self.expanddims_0_axis = 1
|
||||
self.expanddims_3 = P.ExpandDims()
|
||||
self.expanddims_3_axis = 2
|
||||
self.cast_5 = P.Cast()
|
||||
self.cast_5_to = mstype.float32
|
||||
self.sub_7 = P.Sub()
|
||||
self.sub_7_bias = 1.0
|
||||
self.mul_9 = P.Mul()
|
||||
self.mul_9_w = -10000.0
|
||||
self.gather_1_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (30005, 128)).astype(np.float32)),
|
||||
name=None)
|
||||
self.gather_1_axis = 0
|
||||
self.gather_1 = P.Gather()
|
||||
self.gather_2_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (2, 128)).astype(np.float32)), name=None)
|
||||
self.gather_2_axis = 0
|
||||
self.gather_2 = P.Gather()
|
||||
self.add_4 = P.Add()
|
||||
self.add_4_bias = Parameter(Tensor(np.random.uniform(0, 1, (1, 512, 128)).astype(np.float32)), name=None)
|
||||
self.add_6 = P.Add()
|
||||
self.layernorm1_0 = LayerNorm(passthrough_w_0=self.passthrough_w_0, passthrough_w_1=self.passthrough_w_1)
|
||||
self.linear3_0 = Linear(matmul_0_w_shape=(128, 4096), passthrough_w_0=self.passthrough_w_2)
|
||||
self.module34_0 = TransformerLayerWithLayerNorm(batch_size=batch_size,
|
||||
linear3_0_matmul_0_w_shape=(4096, 16384),
|
||||
linear3_1_matmul_0_w_shape=(16384, 4096),
|
||||
passthrough_w_0=self.passthrough_w_3,
|
||||
passthrough_w_1=self.passthrough_w_4,
|
||||
passthrough_w_2=self.passthrough_w_5,
|
||||
passthrough_w_3=self.passthrough_w_6,
|
||||
passthrough_w_4=self.passthrough_w_7,
|
||||
passthrough_w_5=self.passthrough_w_8,
|
||||
passthrough_w_6=self.passthrough_w_9)
|
||||
self.layernorm1_1 = LayerNorm(passthrough_w_0=self.passthrough_w_10, passthrough_w_1=self.passthrough_w_11)
|
||||
|
||||
def construct(self, input_ids, attention_mask, token_type_ids):
|
||||
"""construct function"""
|
||||
opt_expanddims_0 = self.expanddims_0(attention_mask, self.expanddims_0_axis)
|
||||
opt_expanddims_3 = self.expanddims_3(opt_expanddims_0, self.expanddims_3_axis)
|
||||
opt_cast_5 = self.cast_5(opt_expanddims_3, self.cast_5_to)
|
||||
opt_sub_7 = self.sub_7(self.sub_7_bias, opt_cast_5)
|
||||
opt_mul_9 = self.mul_9(opt_sub_7, self.mul_9_w)
|
||||
opt_gather_1_axis = self.gather_1_axis
|
||||
opt_gather_1 = self.gather_1(self.gather_1_input_weight, input_ids, opt_gather_1_axis)
|
||||
opt_gather_2_axis = self.gather_2_axis
|
||||
opt_gather_2 = self.gather_2(self.gather_2_input_weight, token_type_ids, opt_gather_2_axis)
|
||||
opt_add_4 = self.add_4(opt_gather_1, self.add_4_bias)
|
||||
opt_add_6 = self.add_6(opt_add_4, opt_gather_2)
|
||||
layernorm1_0_opt = self.layernorm1_0(opt_add_6)
|
||||
linear3_0_opt = self.linear3_0(layernorm1_0_opt)
|
||||
opt = self.module34_0(linear3_0_opt, opt_mul_9)
|
||||
opt = self.layernorm1_1(opt)
|
||||
for _ in range(11):
|
||||
opt = self.module34_0(opt, opt_mul_9)
|
||||
opt = self.layernorm1_1(opt)
|
||||
return opt
|
|
@ -26,9 +26,9 @@ import gzip
|
|||
import string
|
||||
import pickle
|
||||
import sqlite3
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
import numpy as np
|
||||
from transformers import BasicTokenizer
|
||||
|
||||
|
||||
|
@ -155,6 +155,14 @@ def get_parse():
|
|||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Environment
|
||||
parser.add_argument('--data_path',
|
||||
type=str,
|
||||
default="",
|
||||
help='data path')
|
||||
parser.add_argument('--ckpt_path',
|
||||
type=str,
|
||||
default="",
|
||||
help='ckpt path')
|
||||
parser.add_argument('--seed', type=int, default=42,
|
||||
help="random seed for initialization")
|
||||
parser.add_argument('--seq_len', type=int, default=512,
|
||||
|
@ -179,15 +187,15 @@ def get_parse():
|
|||
help="Set this flag if you want to calculate reader metrics")
|
||||
parser.add_argument('--dev_gold_file',
|
||||
type=str,
|
||||
default="../hotpot_dev_fullwiki_v1.json",
|
||||
default="hotpot_dev_fullwiki_v1.json",
|
||||
help='file of dev ground truth')
|
||||
parser.add_argument('--wiki_db_file',
|
||||
type=str,
|
||||
default="../enwiki_offset.db",
|
||||
default="enwiki_offset.db",
|
||||
help='wiki_database_file')
|
||||
parser.add_argument('--albert_model_path',
|
||||
parser.add_argument('--albert_model',
|
||||
type=str,
|
||||
default="../albert-xxlarge/",
|
||||
default="albert-xxlarge",
|
||||
help='model path of huggingface albert-xxlarge')
|
||||
|
||||
# Retriever
|
||||
|
@ -213,11 +221,11 @@ def get_parse():
|
|||
help='file of rerank result')
|
||||
parser.add_argument('--rerank_encoder_ck_file',
|
||||
type=str,
|
||||
default="../rerank_albert_12.ckpt",
|
||||
default="rerank_albert.ckpt",
|
||||
help='checkpoint of rerank albert-xxlarge')
|
||||
parser.add_argument('--rerank_downstream_ck_file',
|
||||
type=str,
|
||||
default="../rerank_downstream.ckpt",
|
||||
default="rerank_downstream.ckpt",
|
||||
help='checkpoint of rerank downstream')
|
||||
|
||||
# Reader
|
||||
|
@ -233,11 +241,11 @@ def get_parse():
|
|||
help='file of reader example')
|
||||
parser.add_argument('--reader_encoder_ck_file',
|
||||
type=str,
|
||||
default="../albert_12_layer.ckpt",
|
||||
default="reader_albert.ckpt",
|
||||
help='checkpoint of reader albert-xxlarge')
|
||||
parser.add_argument('--reader_downstream_ck_file',
|
||||
type=str,
|
||||
default="../reader_downstream.ckpt",
|
||||
default="reader_downstream.ckpt",
|
||||
help='checkpoint of reader downstream')
|
||||
parser.add_argument('--reader_result_file',
|
||||
type=str,
|
||||
|
@ -274,24 +282,19 @@ def select_reader_dev_data(args):
|
|||
|
||||
for _, res in tqdm(rerank_result.items(), desc="get rerank unique ids"):
|
||||
rerank_unique_ids[res[0]] = True
|
||||
print(f"rerank result num is {len(rerank_unique_ids)}")
|
||||
|
||||
for feature in tqdm(dev_features, desc="select rerank top1 feature"):
|
||||
if feature.unique_id in rerank_unique_ids:
|
||||
feature_unique_ids[feature.unique_id] = True
|
||||
new_dev_features.append(feature)
|
||||
print(f"new feature num is {len(new_dev_features)}")
|
||||
|
||||
for example in tqdm(dev_examples, desc="select rerank top1 example"):
|
||||
if example.unique_id in rerank_unique_ids and example.unique_id in feature_unique_ids:
|
||||
new_dev_examples.append(example)
|
||||
print(f"new examples num is {len(new_dev_examples)}")
|
||||
|
||||
print("start save new examples ......")
|
||||
with gzip.open(reader_example_file, "wb") as f:
|
||||
pickle.dump(new_dev_examples, f)
|
||||
|
||||
print("start save new features ......")
|
||||
with gzip.open(reader_feature_file, "wb") as f:
|
||||
pickle.dump(new_dev_features, f)
|
||||
print("finish selecting reader data !!!")
|
||||
|
@ -382,7 +385,6 @@ def get_ans_from_pos(tokenizer, examples, features, y1, y2, unique_id):
|
|||
tok_text = " ".join(tok_text.split())
|
||||
orig_text = " ".join(orig_tokens)
|
||||
final_text = get_final_text(tok_text, orig_text, True, False)
|
||||
# print("final_text: " + final_text)
|
||||
return final_text
|
||||
|
||||
|
||||
|
@ -450,7 +452,6 @@ def cal_reranker_metrics(dev_gold_file, rerank_result_file):
|
|||
|
||||
for item in tqdm(gt, desc="cal pem"):
|
||||
_id = item["_id"]
|
||||
|
||||
if _id in rerank_result:
|
||||
pred = rerank_result[_id][1]
|
||||
sps = item["supporting_facts"]
|
||||
|
|
|
@ -20,42 +20,48 @@ from mindspore import Tensor, Parameter
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class BertLayerNorm(nn.Cell):
|
||||
"""Layer norm for Bert"""
|
||||
def __init__(self, bln_weight=None, bln_bias=None, eps=1e-12):
|
||||
"""init function"""
|
||||
super(BertLayerNorm, self).__init__()
|
||||
self.weight = bln_weight
|
||||
self.bias = bln_bias
|
||||
self.variance_epsilon = eps
|
||||
self.reduce_mean = P.ReduceMean(keep_dims=True)
|
||||
self.sub = P.Sub()
|
||||
self.pow = P.Pow()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.div = P.Div()
|
||||
self.add = P.Add()
|
||||
self.mul = P.Mul()
|
||||
|
||||
def construct(self, x):
|
||||
u = self.reduce_mean(x, -1)
|
||||
s = self.reduce_mean(self.pow(self.sub(x, u), 2.0), -1)
|
||||
x = self.div(self.sub(x, u), self.sqrt(self.add(s, self.variance_epsilon)))
|
||||
output = self.mul(self.weight, x)
|
||||
output = self.add(output, self.bias)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class Rerank_Downstream(nn.Cell):
|
||||
"""Downstream model for rerank"""
|
||||
def __init__(self):
|
||||
"""init function"""
|
||||
super(Rerank_Downstream, self).__init__()
|
||||
self.dense_0 = nn.Dense(in_channels=4096, out_channels=8192, has_bias=True)
|
||||
self.relu_1 = nn.ReLU()
|
||||
self.reducemean_2 = P.ReduceMean(keep_dims=True)
|
||||
self.sub_3 = P.Sub()
|
||||
self.sub_4 = P.Sub()
|
||||
self.pow_5 = P.Pow()
|
||||
self.pow_5_input_weight = 2.0
|
||||
self.reducemean_6 = P.ReduceMean(keep_dims=True)
|
||||
self.add_7 = P.Add()
|
||||
self.add_7_bias = 9.999999960041972e-13
|
||||
self.sqrt_8 = P.Sqrt()
|
||||
self.div_9 = P.Div()
|
||||
self.mul_10 = P.Mul()
|
||||
self.mul_10_w = Parameter(Tensor(np.random.uniform(0, 1, (8192,)).astype(np.float32)), name=None)
|
||||
self.add_11 = P.Add()
|
||||
self.add_11_bias = Parameter(Tensor(np.random.uniform(0, 1, (8192,)).astype(np.float32)), name=None)
|
||||
self.dense_12 = nn.Dense(in_channels=8192, out_channels=2, has_bias=True)
|
||||
self.relu = nn.ReLU()
|
||||
self.linear_1 = nn.Dense(in_channels=4096, out_channels=8192, has_bias=True)
|
||||
self.linear_2 = nn.Dense(in_channels=8192, out_channels=2, has_bias=True)
|
||||
self.bln_1_weight = Parameter(Tensor(np.random.uniform(0, 1, (8192,)).astype(np.float32)), name=None)
|
||||
self.bln_1_bias = Parameter(Tensor(np.random.uniform(0, 1, (8192,)).astype(np.float32)), name=None)
|
||||
self.bln_1 = BertLayerNorm(bln_weight=self.bln_1_weight, bln_bias=self.bln_1_bias)
|
||||
|
||||
def construct(self, x):
|
||||
def construct(self, cls_emd):
|
||||
"""construct function"""
|
||||
opt_dense_0 = self.dense_0(x)
|
||||
opt_relu_1 = self.relu_1(opt_dense_0)
|
||||
opt_reducemean_2 = self.reducemean_2(opt_relu_1, -1)
|
||||
opt_sub_3 = self.sub_3(opt_relu_1, opt_reducemean_2)
|
||||
opt_sub_4 = self.sub_4(opt_relu_1, opt_reducemean_2)
|
||||
opt_pow_5 = self.pow_5(opt_sub_3, self.pow_5_input_weight)
|
||||
opt_reducemean_6 = self.reducemean_6(opt_pow_5, -1)
|
||||
opt_add_7 = self.add_7(opt_reducemean_6, self.add_7_bias)
|
||||
opt_sqrt_8 = self.sqrt_8(opt_add_7)
|
||||
opt_div_9 = self.div_9(opt_sub_4, opt_sqrt_8)
|
||||
opt_mul_10 = self.mul_10(self.mul_10_w, opt_div_9)
|
||||
opt_add_11 = self.add_11(opt_mul_10, self.add_11_bias)
|
||||
opt_dense_12 = self.dense_12(opt_add_11)
|
||||
return opt_dense_12
|
||||
output = self.linear_1(cls_emd)
|
||||
output = self.relu(output)
|
||||
output = self.bln_1(output)
|
||||
output = self.linear_2(output)
|
||||
return output
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import load_checkpoint, load_param_into_net
|
||||
from src.rerank_albert_xxlarge import Rerank_Albert
|
||||
from src.albert import Albert
|
||||
from src.rerank_downstream import Rerank_Downstream
|
||||
|
||||
|
||||
|
@ -26,15 +26,15 @@ class Reranker(nn.Cell):
|
|||
"""init function"""
|
||||
super(Reranker, self).__init__(auto_prefix=False)
|
||||
|
||||
self.encoder = Rerank_Albert(batch_size)
|
||||
self.encoder = Albert(batch_size)
|
||||
param_dict = load_checkpoint(encoder_ck_file)
|
||||
not_load_params_1 = load_param_into_net(self.encoder, param_dict)
|
||||
print(f"not loaded albert: {not_load_params_1}")
|
||||
print(f"re-ranker albert not loaded params: {not_load_params_1}")
|
||||
|
||||
self.no_answer_mlp = Rerank_Downstream()
|
||||
param_dict = load_checkpoint(downstream_ck_file)
|
||||
not_load_params_2 = load_param_into_net(self.no_answer_mlp, param_dict)
|
||||
print(f"not loaded downstream: {not_load_params_2}")
|
||||
print(f"re-ranker downstream not loaded params: {not_load_params_2}")
|
||||
|
||||
def construct(self, input_ids, attn_mask, token_type_ids):
|
||||
"""construct function"""
|
||||
|
|
|
@ -18,8 +18,8 @@ import json
|
|||
import random
|
||||
from collections import defaultdict
|
||||
from time import time
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from mindspore import Tensor, ops
|
||||
from mindspore import dtype as mstype
|
||||
|
@ -32,8 +32,8 @@ def rerank(args):
|
|||
"""rerank function"""
|
||||
rerank_feature_file = args.rerank_feature_file
|
||||
rerank_result_file = args.rerank_result_file
|
||||
encoder_ck_file = args.rerank_encoder_ck_file
|
||||
downstream_ck_file = args.rerank_downstream_ck_file
|
||||
encoder_ck_file = args.rerank_encoder_ck_path
|
||||
downstream_ck_file = args.rerank_downstream_ck_path
|
||||
seed = args.seed
|
||||
seq_len = args.seq_len
|
||||
batch_size = args.rerank_batch_size
|
||||
|
|
|
@ -1,302 +0,0 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Two Hop BERT.
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor, Parameter
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
BATCH_SIZE = -1
|
||||
|
||||
|
||||
class LayerNorm(nn.Cell):
|
||||
"""layer norm"""
|
||||
def __init__(self):
|
||||
super(LayerNorm, self).__init__()
|
||||
self.reducemean_0 = P.ReduceMean(keep_dims=True)
|
||||
self.sub_1 = P.Sub()
|
||||
self.cast_2 = P.Cast()
|
||||
self.cast_2_to = mstype.float32
|
||||
self.pow_3 = P.Pow()
|
||||
self.pow_3_input_weight = 2.0
|
||||
self.reducemean_4 = P.ReduceMean(keep_dims=True)
|
||||
self.add_5 = P.Add()
|
||||
self.add_5_bias = 9.999999960041972e-13
|
||||
self.sqrt_6 = P.Sqrt()
|
||||
self.div_7 = P.Div()
|
||||
self.mul_8 = P.Mul()
|
||||
self.mul_8_w = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.add_9 = P.Add()
|
||||
self.add_9_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_reducemean_0 = self.reducemean_0(x, -1)
|
||||
opt_sub_1 = self.sub_1(x, opt_reducemean_0)
|
||||
opt_cast_2 = self.cast_2(opt_sub_1, self.cast_2_to)
|
||||
opt_pow_3 = self.pow_3(opt_cast_2, self.pow_3_input_weight)
|
||||
opt_reducemean_4 = self.reducemean_4(opt_pow_3, -1)
|
||||
opt_add_5 = self.add_5(opt_reducemean_4, self.add_5_bias)
|
||||
opt_sqrt_6 = self.sqrt_6(opt_add_5)
|
||||
opt_div_7 = self.div_7(opt_sub_1, opt_sqrt_6)
|
||||
opt_mul_8 = self.mul_8(opt_div_7, self.mul_8_w)
|
||||
opt_add_9 = self.add_9(opt_mul_8, self.add_9_bias)
|
||||
return opt_add_9
|
||||
|
||||
|
||||
class MultiHeadAttn(nn.Cell):
|
||||
"""multi head attention layer"""
|
||||
def __init__(self):
|
||||
super(MultiHeadAttn, self).__init__()
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0.to_float(mstype.float16)
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.matmul_1 = nn.MatMul()
|
||||
self.matmul_1.to_float(mstype.float16)
|
||||
self.matmul_1_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.matmul_2 = nn.MatMul()
|
||||
self.matmul_2.to_float(mstype.float16)
|
||||
self.matmul_2_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.add_3 = P.Add()
|
||||
self.add_3_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.add_4 = P.Add()
|
||||
self.add_4_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.add_5 = P.Add()
|
||||
self.add_5_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
self.reshape_6 = P.Reshape()
|
||||
self.reshape_6_shape = tuple([BATCH_SIZE, 448, 12, 64])
|
||||
self.reshape_7 = P.Reshape()
|
||||
self.reshape_7_shape = tuple([BATCH_SIZE, 448, 12, 64])
|
||||
self.reshape_8 = P.Reshape()
|
||||
self.reshape_8_shape = tuple([BATCH_SIZE, 448, 12, 64])
|
||||
self.transpose_9 = P.Transpose()
|
||||
self.transpose_10 = P.Transpose()
|
||||
self.transpose_11 = P.Transpose()
|
||||
self.matmul_12 = nn.MatMul()
|
||||
self.matmul_12.to_float(mstype.float16)
|
||||
self.div_13 = P.Div()
|
||||
self.div_13_w = 8.0
|
||||
self.add_14 = P.Add()
|
||||
self.softmax_15 = nn.Softmax(axis=3)
|
||||
self.matmul_16 = nn.MatMul()
|
||||
self.matmul_16.to_float(mstype.float16)
|
||||
self.transpose_17 = P.Transpose()
|
||||
self.reshape_18 = P.Reshape()
|
||||
self.reshape_18_shape = tuple([BATCH_SIZE, 448, 768])
|
||||
self.matmul_19 = nn.MatMul()
|
||||
self.matmul_19.to_float(mstype.float16)
|
||||
self.matmul_19_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
|
||||
self.add_20 = P.Add()
|
||||
self.add_20_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(x, self.matmul_0_w)
|
||||
opt_matmul_1 = self.matmul_1(x, self.matmul_1_w)
|
||||
opt_matmul_2 = self.matmul_2(x, self.matmul_2_w)
|
||||
opt_matmul_0 = P.Cast()(opt_matmul_0, mstype.float32)
|
||||
opt_matmul_1 = P.Cast()(opt_matmul_1, mstype.float32)
|
||||
opt_matmul_2 = P.Cast()(opt_matmul_2, mstype.float32)
|
||||
opt_add_3 = self.add_3(opt_matmul_0, self.add_3_bias)
|
||||
opt_add_4 = self.add_4(opt_matmul_1, self.add_4_bias)
|
||||
opt_add_5 = self.add_5(opt_matmul_2, self.add_5_bias)
|
||||
opt_reshape_6 = self.reshape_6(opt_add_3, self.reshape_6_shape)
|
||||
opt_reshape_7 = self.reshape_7(opt_add_4, self.reshape_7_shape)
|
||||
opt_reshape_8 = self.reshape_8(opt_add_5, self.reshape_8_shape)
|
||||
opt_transpose_9 = self.transpose_9(opt_reshape_6, (0, 2, 1, 3))
|
||||
opt_transpose_10 = self.transpose_10(opt_reshape_7, (0, 2, 3, 1))
|
||||
opt_transpose_11 = self.transpose_11(opt_reshape_8, (0, 2, 1, 3))
|
||||
opt_matmul_12 = self.matmul_12(opt_transpose_9, opt_transpose_10)
|
||||
opt_matmul_12 = P.Cast()(opt_matmul_12, mstype.float32)
|
||||
opt_div_13 = self.div_13(opt_matmul_12, self.div_13_w)
|
||||
opt_add_14 = self.add_14(opt_div_13, x0)
|
||||
opt_add_14 = P.Cast()(opt_add_14, mstype.float32)
|
||||
opt_softmax_15 = self.softmax_15(opt_add_14)
|
||||
opt_matmul_16 = self.matmul_16(opt_softmax_15, opt_transpose_11)
|
||||
opt_matmul_16 = P.Cast()(opt_matmul_16, mstype.float32)
|
||||
opt_transpose_17 = self.transpose_17(opt_matmul_16, (0, 2, 1, 3))
|
||||
opt_reshape_18 = self.reshape_18(opt_transpose_17, self.reshape_18_shape)
|
||||
opt_matmul_19 = self.matmul_19(opt_reshape_18, self.matmul_19_w)
|
||||
opt_matmul_19 = P.Cast()(opt_matmul_19, mstype.float32)
|
||||
opt_add_20 = self.add_20(opt_matmul_19, self.add_20_bias)
|
||||
return opt_add_20
|
||||
|
||||
|
||||
class Linear(nn.Cell):
|
||||
"""linear layer"""
|
||||
def __init__(self, matmul_0_weight_shape, add_1_bias_shape):
|
||||
super(Linear, self).__init__()
|
||||
self.matmul_0 = nn.MatMul()
|
||||
self.matmul_0.to_float(mstype.float16)
|
||||
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, matmul_0_weight_shape).astype(np.float32)),
|
||||
name=None)
|
||||
self.add_1 = P.Add()
|
||||
self.add_1_bias = Parameter(Tensor(np.random.uniform(0, 1, add_1_bias_shape).astype(np.float32)), name=None)
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_matmul_0 = self.matmul_0(x, self.matmul_0_w)
|
||||
opt_matmul_0 = P.Cast()(opt_matmul_0, mstype.float32)
|
||||
opt_add_1 = self.add_1(opt_matmul_0, self.add_1_bias)
|
||||
return opt_add_1
|
||||
|
||||
|
||||
class GeLU(nn.Cell):
|
||||
"""gelu layer"""
|
||||
def __init__(self):
|
||||
super(GeLU, self).__init__()
|
||||
self.div_0 = P.Div()
|
||||
self.div_0_w = 1.4142135381698608
|
||||
self.erf_1 = P.Erf()
|
||||
self.add_2 = P.Add()
|
||||
self.add_2_bias = 1.0
|
||||
self.mul_3 = P.Mul()
|
||||
self.mul_4 = P.Mul()
|
||||
self.mul_4_w = 0.5
|
||||
|
||||
def construct(self, x):
|
||||
"""construct function"""
|
||||
opt_div_0 = self.div_0(x, self.div_0_w)
|
||||
opt_erf_1 = self.erf_1(opt_div_0)
|
||||
opt_add_2 = self.add_2(opt_erf_1, self.add_2_bias)
|
||||
opt_mul_3 = self.mul_3(x, opt_add_2)
|
||||
opt_mul_4 = self.mul_4(opt_mul_3, self.mul_4_w)
|
||||
return opt_mul_4
|
||||
|
||||
|
||||
class TransformerLayer(nn.Cell):
|
||||
"""transformer layer"""
|
||||
def __init__(self, linear3_0_matmul_0_weight_shape, linear3_0_add_1_bias_shape, linear3_1_matmul_0_weight_shape,
|
||||
linear3_1_add_1_bias_shape):
|
||||
super(TransformerLayer, self).__init__()
|
||||
self.multiheadattn_0 = MultiHeadAttn()
|
||||
self.add_0 = P.Add()
|
||||
self.layernorm1_0 = LayerNorm()
|
||||
self.linear3_0 = Linear(matmul_0_weight_shape=linear3_0_matmul_0_weight_shape,
|
||||
add_1_bias_shape=linear3_0_add_1_bias_shape)
|
||||
self.gelu1_0 = GeLU()
|
||||
self.linear3_1 = Linear(matmul_0_weight_shape=linear3_1_matmul_0_weight_shape,
|
||||
add_1_bias_shape=linear3_1_add_1_bias_shape)
|
||||
self.add_1 = P.Add()
|
||||
self.layernorm1_1 = LayerNorm()
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
multiheadattn_0_opt = self.multiheadattn_0(x, x0)
|
||||
opt_add_0 = self.add_0(multiheadattn_0_opt, x)
|
||||
layernorm1_0_opt = self.layernorm1_0(opt_add_0)
|
||||
linear3_0_opt = self.linear3_0(layernorm1_0_opt)
|
||||
gelu1_0_opt = self.gelu1_0(linear3_0_opt)
|
||||
linear3_1_opt = self.linear3_1(gelu1_0_opt)
|
||||
opt_add_1 = self.add_1(linear3_1_opt, layernorm1_0_opt)
|
||||
layernorm1_1_opt = self.layernorm1_1(opt_add_1)
|
||||
return layernorm1_1_opt
|
||||
|
||||
|
||||
class Encoder1_4(nn.Cell):
|
||||
"""encoder layer"""
|
||||
def __init__(self):
|
||||
super(Encoder1_4, self).__init__()
|
||||
self.module46_0 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
|
||||
linear3_0_add_1_bias_shape=(3072,),
|
||||
linear3_1_matmul_0_weight_shape=(3072, 768),
|
||||
linear3_1_add_1_bias_shape=(768,))
|
||||
self.module46_1 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
|
||||
linear3_0_add_1_bias_shape=(3072,),
|
||||
linear3_1_matmul_0_weight_shape=(3072, 768),
|
||||
linear3_1_add_1_bias_shape=(768,))
|
||||
self.module46_2 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
|
||||
linear3_0_add_1_bias_shape=(3072,),
|
||||
linear3_1_matmul_0_weight_shape=(3072, 768),
|
||||
linear3_1_add_1_bias_shape=(768,))
|
||||
self.module46_3 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
|
||||
linear3_0_add_1_bias_shape=(3072,),
|
||||
linear3_1_matmul_0_weight_shape=(3072, 768),
|
||||
linear3_1_add_1_bias_shape=(768,))
|
||||
|
||||
def construct(self, x, x0):
|
||||
"""construct function"""
|
||||
module46_0_opt = self.module46_0(x, x0)
|
||||
module46_1_opt = self.module46_1(module46_0_opt, x0)
|
||||
module46_2_opt = self.module46_2(module46_1_opt, x0)
|
||||
module46_3_opt = self.module46_3(module46_2_opt, x0)
|
||||
return module46_3_opt
|
||||
|
||||
|
||||
class ModelTwoHop(nn.Cell):
|
||||
"""two hop layer"""
|
||||
def __init__(self):
|
||||
super(ModelTwoHop, self).__init__()
|
||||
self.expanddims_0 = P.ExpandDims()
|
||||
self.expanddims_0_axis = 1
|
||||
self.expanddims_3 = P.ExpandDims()
|
||||
self.expanddims_3_axis = 2
|
||||
self.cast_5 = P.Cast()
|
||||
self.cast_5_to = mstype.float32
|
||||
self.sub_7 = P.Sub()
|
||||
self.sub_7_bias = 1.0
|
||||
self.mul_9 = P.Mul()
|
||||
self.mul_9_w = -10000.0
|
||||
self.gather_1_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (30522, 768)).astype(np.float32)),
|
||||
name=None)
|
||||
self.gather_1_axis = 0
|
||||
self.gather_1 = P.Gather()
|
||||
self.gather_2_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (2, 768)).astype(np.float32)), name=None)
|
||||
self.gather_2_axis = 0
|
||||
self.gather_2 = P.Gather()
|
||||
self.add_4 = P.Add()
|
||||
self.add_6 = P.Add()
|
||||
self.add_6_bias = Parameter(Tensor(np.random.uniform(0, 1, (1, 448, 768)).astype(np.float32)), name=None)
|
||||
self.layernorm1_0 = LayerNorm()
|
||||
self.module50_0 = Encoder1_4()
|
||||
self.module50_1 = Encoder1_4()
|
||||
self.module50_2 = Encoder1_4()
|
||||
self.gather_643_input_weight = Tensor(np.array(0))
|
||||
self.gather_643_axis = 1
|
||||
self.gather_643 = P.Gather()
|
||||
self.dense_644 = nn.Dense(in_channels=768, out_channels=768, has_bias=True)
|
||||
self.tanh_645 = nn.Tanh()
|
||||
|
||||
def construct(self, input_ids, token_type_ids, attention_mask):
|
||||
"""construct function"""
|
||||
input_ids = P.Cast()(input_ids, mstype.int32)
|
||||
token_type_ids = P.Cast()(token_type_ids, mstype.int32)
|
||||
attention_mask = P.Cast()(attention_mask, mstype.int32)
|
||||
opt_expanddims_0 = self.expanddims_0(attention_mask, self.expanddims_0_axis)
|
||||
opt_expanddims_3 = self.expanddims_3(opt_expanddims_0, self.expanddims_3_axis)
|
||||
opt_cast_5 = self.cast_5(opt_expanddims_3, self.cast_5_to)
|
||||
opt_sub_7 = self.sub_7(self.sub_7_bias, opt_cast_5)
|
||||
opt_mul_9 = self.mul_9(opt_sub_7, self.mul_9_w)
|
||||
opt_gather_1_axis = self.gather_1_axis
|
||||
opt_gather_1 = self.gather_1(self.gather_1_input_weight, input_ids, opt_gather_1_axis)
|
||||
opt_gather_2_axis = self.gather_2_axis
|
||||
opt_gather_2 = self.gather_2(self.gather_2_input_weight, token_type_ids, opt_gather_2_axis)
|
||||
opt_add_4 = self.add_4(opt_gather_1, opt_gather_2)
|
||||
opt_add_6 = self.add_6(opt_add_4, self.add_6_bias)
|
||||
layernorm1_0_opt = self.layernorm1_0(opt_add_6)
|
||||
module50_0_opt = self.module50_0(layernorm1_0_opt, opt_mul_9)
|
||||
module50_1_opt = self.module50_1(module50_0_opt, opt_mul_9)
|
||||
module50_2_opt = self.module50_2(module50_1_opt, opt_mul_9)
|
||||
opt_gather_643_axis = self.gather_643_axis
|
||||
opt_gather_643 = self.gather_643(module50_2_opt, self.gather_643_input_weight, opt_gather_643_axis)
|
||||
opt_dense_644 = self.dense_644(opt_gather_643)
|
||||
opt_tanh_645 = self.tanh_645(opt_dense_644)
|
||||
return opt_tanh_645
|
Loading…
Reference in New Issue