forked from mindspore-Ecosystem/mindspore
update README for SSD and centerface
This commit is contained in:
parent
82faa51cc9
commit
edc197d48d
|
@ -48,7 +48,7 @@ Four loss is presented, total loss is their weighted mean.
|
|||
|
||||
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
|
||||
|
||||
Dataset support: [WiderFace] or datasetd with the same format as WiderFace
|
||||
Dataset support: [WiderFace] or dataset with the same format as WiderFace
|
||||
Annotation support: [WiderFace] or annotation as the same format as WiderFace
|
||||
|
||||
- The directory structure is as follows, the name of directory and file is user define:
|
||||
|
@ -105,7 +105,15 @@ step1: prepare pretrained model: train a mobilenet_v2 model by mindspore or use
|
|||
python convert_weight_mobilenetv2.py --ckpt_fn=./mobilenet_v2_key.ckpt --pt_fn=./mobilenet_v2-b0353104.pth --out_ckpt_fn=./mobilenet_v2.ckpt
|
||||
```
|
||||
|
||||
step2: prepare user rank_table
|
||||
step2: prepare dataset
|
||||
|
||||
 1)download dataset from [WIDER FACE](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/).
|
||||
|
||||
 2)download the ground_truth from [ground_truth](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip).
|
||||
|
||||
 3)download training annotations from [annotations](https://pan.baidu.com/s/1j_2wggZ3bvCuOAfZvjWqTg). password: **f9hh**
|
||||
|
||||
step3: prepare user rank_table
|
||||
|
||||
```python
|
||||
# user can use your own rank table file
|
||||
|
@ -114,7 +122,7 @@ step2: prepare user rank_table
|
|||
python hccl_tools.py --device_num "[0,8)"
|
||||
```
|
||||
|
||||
step3: train
|
||||
step4: train
|
||||
|
||||
```python
|
||||
cd scripts;
|
||||
|
@ -134,7 +142,7 @@ mkdir ./model
|
|||
cp device0/outputs/*/*.ckpt ./model # cp model to [MODEL_PATH]
|
||||
```
|
||||
|
||||
step4: test
|
||||
step5: test
|
||||
|
||||
```python
|
||||
# test CenterFace preparing
|
||||
|
@ -157,7 +165,7 @@ ls ./dataset/centerface/ground_truth/val.mat # annot_path
|
|||
sh test_distribute.sh
|
||||
```
|
||||
|
||||
step5: eval
|
||||
step6: eval
|
||||
|
||||
```python
|
||||
# after test, eval CenterFace, get MAP
|
||||
|
|
|
@ -42,10 +42,10 @@ SSD方法基于前向卷积网络,该网络产生固定大小的边界框集
|
|||
|
||||
我们提供了4种不同的基础架构:
|
||||
|
||||
- **ssd300**, 参考论文实现. 使用mobilenet-v2作为骨干网络, 并使用相同的bbox预测器.
|
||||
- ***ssd-mobilenet-v1-fpn**, 使用mobilenet-v1和FPN作为特征提取器, 并使用权重共享bbox预测器.
|
||||
- ***ssd-resnet50-fpn**, 使用resnet50和FPN作为特征提取器, 并使用权重共享bbox预测器.
|
||||
- **ssd-vgg16**, 参考论文实现. 使用vgg16作为骨干网络, 并使用相同的bbox预测器.
|
||||
- **ssd300**, 参考论文实现。 使用mobilenet-v2作为骨干网络, 并使用和论文相同的bbox预测器。
|
||||
- ***ssd-mobilenet-v1-fpn**, 使用mobilenet-v1和FPN作为特征提取器, 并使用权重共享box预测器。
|
||||
- ***ssd-resnet50-fpn**, 使用resnet50和FPN作为特征提取器, 并使用权重共享box预测器。
|
||||
- **ssd-vgg16**, 参考论文实现。 使用vgg16作为骨干网络, 并使用和论文相同的bbox预测器。
|
||||
|
||||
# 数据集
|
||||
|
||||
|
|
Loading…
Reference in New Issue