!40800 [MSLITE][CPU] conv im2col refacor

Merge pull request !40800 from Greatpan/conv_im2col_refactor
This commit is contained in:
i-robot 2022-08-25 06:51:13 +00:00 committed by Gitee
commit e42ce78f04
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
15 changed files with 805 additions and 7 deletions

View File

@ -60,3 +60,4 @@
"mindspore/mindspore/lite/examples/quick_start_micro/" "syntaxError"
"mindspore/mindspore/ccsrc/plugin/device/cpu/kernel/nnacl/experimental" "unreadVariable"
"mindspore/mindspore/lite/python/src/pybind_module.cc" "syntaxError"
"mindspore/mindspore/lite/src/litert/kernel/cpu/fp32/convolution_im2col_fp32.cc" "knownConditionTrueFalse"

View File

@ -29,6 +29,40 @@ else()
list(REMOVE_ITEM KERNEL_SRC ${CMAKE_CURRENT_SOURCE_DIR}/base/quant_dtype_cast.cc)
endif()
if(NOT PLATFORM_ARM64)
set(KERNEL_SRC_ARM64_FILE ${CMAKE_CURRENT_SOURCE_DIR}/fp32/convolution_im2col_arm64_fp32.cc
${CMAKE_CURRENT_SOURCE_DIR}/fp32/matmul_fp32_arm64.cc
)
list(REMOVE_ITEM KERNEL_SRC ${KERNEL_SRC_ARM64_FILE})
endif()
if(NOT PLATFORM_ARM32)
set(KERNEL_SRC_ARM32_FILE ${CMAKE_CURRENT_SOURCE_DIR}/fp32/convolution_im2col_arm32_fp32.cc
${CMAKE_CURRENT_SOURCE_DIR}/fp32/matmul_fp32_arm32.cc
)
list(REMOVE_ITEM KERNEL_SRC ${KERNEL_SRC_ARM32_FILE})
endif()
if(NOT("${X86_64_SIMD}" STREQUAL "sse" OR "${X86_64_SIMD}" STREQUAL "avx" OR "${X86_64_SIMD}" STREQUAL "avx512"))
set(KERNEL_SRC_SSE_FILE ${CMAKE_CURRENT_SOURCE_DIR}/fp32/convolution_im2col_sse_fp32.cc
${CMAKE_CURRENT_SOURCE_DIR}/fp32/matmul_fp32_sse.cc
)
list(REMOVE_ITEM KERNEL_SRC ${KERNEL_SRC_SSE_FILE})
endif()
if(NOT("${X86_64_SIMD}" STREQUAL "avx" OR "${X86_64_SIMD}" STREQUAL "avx512"))
set(KERNEL_SRC_AVX_FILE ${CMAKE_CURRENT_SOURCE_DIR}/fp32/convolution_im2col_avx_fp32.cc
${CMAKE_CURRENT_SOURCE_DIR}/fp32/matmul_fp32_avx.cc
${CMAKE_CURRENT_SOURCE_DIR}/fp32/convolution_slidewindows_avx_fp32.cc
)
list(REMOVE_ITEM KERNEL_SRC ${KERNEL_SRC_AVX_FILE})
endif()
if(NOT("${X86_64_SIMD}" STREQUAL "avx512"))
set(KERNEL_SRC_AVX512_FILE ${CMAKE_CURRENT_SOURCE_DIR}/fp32/matmul_fp32_avx512.cc)
list(REMOVE_ITEM KERNEL_SRC ${KERNEL_SRC_AVX512_FILE})
endif()
if(MSLITE_ENABLE_SPARSE_COMPUTE)
file(GLOB SPARSE_KERNEL_SRC
${CMAKE_CURRENT_SOURCE_DIR}/fp32_sparse/*.cc

View File

@ -16,7 +16,7 @@
#include "src/litert/kernel/cpu/fp32/convolution_delegate_fp32.h"
#include "src/litert/kernel_registry.h"
#include "src/litert/kernel/cpu/fp32/convolution_fp32.h"
#include "src/litert/kernel/cpu/fp32/convolution_im2col_fp32.h"
#include "src/litert/kernel/cpu/fp32/convolution_1x1_fp32.h"
#include "src/litert/kernel/cpu/fp32/convolution_winograd_fp32.h"
#include "src/litert/kernel/cpu/fp32/convolution_depthwise_fp32.h"
@ -189,9 +189,9 @@ kernel::LiteKernel *ConvolutionDelegateCPUKernel::CpuConvFp32NC4KernelSelect() {
#endif
#if defined(ENABLE_ARM64) || defined(ENABLE_AVX)
auto kernel = new (std::nothrow) kernel::ConvolutionCPUKernel(
op_parameter_, in_tensors_, out_tensors_, static_cast<const lite::InnerContext *>(this->ms_context_),
origin_weight_, origin_bias_);
auto kernel = CreateConvolutionIm2ColCPUKernel(op_parameter_, in_tensors_, out_tensors_,
static_cast<const lite::InnerContext *>(this->ms_context_),
origin_weight_, origin_bias_);
return kernel;
#endif
@ -281,9 +281,9 @@ kernel::LiteKernel *ConvolutionDelegateCPUKernel::CpuConvFp32NHWCKernelSelect()
op_parameter_, in_tensors_, out_tensors_, static_cast<const lite::InnerContext *>(this->ms_context_),
origin_weight_, origin_bias_);
} else {
kernel = new (std::nothrow) kernel::ConvolutionCPUKernel(
op_parameter_, in_tensors_, out_tensors_, static_cast<const lite::InnerContext *>(this->ms_context_),
origin_weight_, origin_bias_);
kernel = CreateConvolutionIm2ColCPUKernel(op_parameter_, in_tensors_, out_tensors_,
static_cast<const lite::InnerContext *>(this->ms_context_),
origin_weight_, origin_bias_);
}
}
return kernel;

View File

@ -0,0 +1,26 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/litert/kernel/cpu/fp32/convolution_im2col_arm32_fp32.h"
namespace mindspore::kernel {
void ConvolutionIm2ColARM32CPUKernel::InitGlobalVariable() {
oc_tile_ = C4NUM;
row_tile_ = C12NUM;
rowMajor2ColNMajorFunc = RowMajor2Col4Major;
}
} // namespace mindspore::kernel

View File

@ -0,0 +1,36 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_ARM32_FP32_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_ARM32_FP32_H_
#include <vector>
#include "src/litert/kernel/cpu/fp32/convolution_im2col_base_fp32.h"
namespace mindspore::kernel {
class ConvolutionIm2ColARM32CPUKernel : public ConvolutionIm2ColBaseCPUKernel {
public:
ConvolutionIm2ColARM32CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
float *origin_weight, float *origin_bias)
: ConvolutionIm2ColBaseCPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias) {}
~ConvolutionIm2ColARM32CPUKernel() override {}
void InitGlobalVariable() override;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_FP32_H_

View File

@ -0,0 +1,48 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/litert/kernel/cpu/fp32/convolution_im2col_arm64_fp32.h"
#include "nnacl/fp32/conv_common_fp32.h"
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_INFER_INVALID;
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
void ConvolutionIm2ColARM64CPUKernel::InitGlobalVariable() {
oc_tile_ = C8NUM;
row_tile_ = C12NUM;
rowMajor2ColNMajorFunc = RowMajor2Col8Major;
}
int ConvolutionIm2ColARM64CPUKernel::RunImpl(int task_id) {
auto ori_input_data = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->data());
if (out_tensors_[0]->format() != NC4HW4) {
if (use_batch_cut_flag_) {
ConvFp32CutByBatch(ori_input_data, packed_input_, reinterpret_cast<float *>(packed_weight_),
reinterpret_cast<float *>(bias_data_), col_major_input_, tmp_output_, task_id, conv_param_);
} else {
ConvFp32(ori_input_data, packed_input_, reinterpret_cast<float *>(packed_weight_),
reinterpret_cast<float *>(bias_data_), col_major_input_, tmp_output_, task_id, conv_param_);
}
} else {
ConvFp32OutNC4HW4(ori_input_data, packed_input_, reinterpret_cast<float *>(packed_weight_),
reinterpret_cast<float *>(bias_data_), col_major_input_, tmp_output_, task_id, conv_param_);
}
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -0,0 +1,37 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_ARM64_FP32_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_ARM64_FP32_H_
#include <vector>
#include "src/litert/kernel/cpu/fp32/convolution_im2col_base_fp32.h"
namespace mindspore::kernel {
class ConvolutionIm2ColARM64CPUKernel : public ConvolutionIm2ColBaseCPUKernel {
public:
ConvolutionIm2ColARM64CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
float *origin_weight, float *origin_bias)
: ConvolutionIm2ColBaseCPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias) {}
~ConvolutionIm2ColARM64CPUKernel() override {}
void InitGlobalVariable() override;
int RunImpl(int task_id) override;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_FP32_H_

View File

@ -0,0 +1,113 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/litert/kernel/cpu/fp32/convolution_im2col_avx_fp32.h"
#include "nnacl/fp32/conv_common_fp32.h"
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_INFER_INVALID;
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
void ConvolutionIm2ColAVXCPUKernel::InitGlobalVariable() {
oc_tile_ = C16NUM;
row_tile_ = C6NUM;
rowMajor2ColNMajorFunc = RowMajor2Col16Major;
}
int ConvolutionIm2ColAVXCPUKernel::InitTmpBuffer() {
MS_ASSERT(ctx_->allocator != nullptr);
CHECK_NULL_RETURN(out_tensors_[0]);
CHECK_NULL_RETURN(out_tensors_[0]->MutableData());
int unit_size =
conv_param_->kernel_h_ * conv_param_->kernel_w_ * conv_param_->input_channel_ * row_tile_ * thread_count_;
packed_input_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(unit_size * sizeof(float)));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed input failed.";
return RET_ERROR;
}
col_major_input_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(unit_size * sizeof(float)));
if (col_major_input_ == nullptr) {
MS_LOG(ERROR) << "malloc col_major_input_ failed.";
return RET_ERROR;
}
if (conv_param_->output_channel_ % oc_tile_ != 0 && out_tensors_[0]->format() == NC4HW4) {
output_need_align_ = true;
int oc_algin = UP_DIV(conv_param_->output_channel_, oc_tile_);
int pack_output_size =
conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * oc_tile_ * oc_algin;
tmp_output_ = reinterpret_cast<float *>(ms_context_->allocator->Malloc(pack_output_size * sizeof(float)));
if (tmp_output_ == nullptr) {
MS_LOG(ERROR) << "Malloc tmp_output_ buffer is failed.";
return RET_ERROR;
}
}
return RET_OK;
}
int ConvolutionIm2ColAVXCPUKernel::RunImpl(int task_id) {
auto ori_input_data = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->data());
if (out_tensors_[0]->format() != NC4HW4) {
if (use_batch_cut_flag_) {
ConvFp32CutByBatch(ori_input_data, packed_input_, reinterpret_cast<float *>(packed_weight_),
reinterpret_cast<float *>(bias_data_), col_major_input_, tmp_output_, task_id, conv_param_);
} else {
ConvFp32(ori_input_data, packed_input_, reinterpret_cast<float *>(packed_weight_),
reinterpret_cast<float *>(bias_data_), col_major_input_, tmp_output_, task_id, conv_param_);
}
} else {
ConvFp32OutNC4HW4(ori_input_data, packed_input_, reinterpret_cast<float *>(packed_weight_),
reinterpret_cast<float *>(bias_data_), col_major_input_, tmp_output_, task_id, conv_param_);
}
return RET_OK;
}
int ConvolutionIm2ColAVXCPUKernel::Run() {
auto ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
FreeTmpBuffer();
return RET_ERROR;
}
auto output_addr = reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->MutableData());
if (!output_need_align_) {
tmp_output_ = output_addr;
}
if (RepackWeight() != RET_OK) {
FreeTmpBuffer();
MS_LOG(ERROR) << "Repack weight failed.";
return RET_ERROR;
}
ret = ParallelLaunch(this->ms_context_, ConvolutionIm2ColImpl, this, thread_count_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "conv error error_code[" << ret << "]";
}
if (output_need_align_) {
PackNC8HW8AlignedToNC8HW8NotAlignedFp32(tmp_output_, output_addr, conv_param_->output_batch_,
conv_param_->output_h_ * conv_param_->output_w_,
conv_param_->output_channel_);
}
FreeTmpBuffer();
return ret;
}
} // namespace mindspore::kernel

View File

@ -0,0 +1,40 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_AVX_FP32_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_AVX_FP32_H_
#include <vector>
#include "src/litert/kernel/cpu/fp32/convolution_im2col_base_fp32.h"
namespace mindspore::kernel {
class ConvolutionIm2ColAVXCPUKernel : public ConvolutionIm2ColBaseCPUKernel {
public:
ConvolutionIm2ColAVXCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
float *origin_weight, float *origin_bias)
: ConvolutionIm2ColBaseCPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias) {}
~ConvolutionIm2ColAVXCPUKernel() override {}
void InitGlobalVariable() override;
int InitTmpBuffer() override;
int Run() override;
int RunImpl(int task_id) override;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_FP32_H_

View File

@ -0,0 +1,224 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/litert/kernel/cpu/fp32/convolution_im2col_base_fp32.h"
#include "src/litert/pack_weight_manager.h"
#include "include/errorcode.h"
#include "nnacl/common_func.h"
#include "schema/model_generated.h"
#include "src/litert/kernel_registry.h"
#include "nnacl/fp32/conv_common_fp32.h"
#include "nnacl/fp32/matmul_fp32.h"
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_INFER_INVALID;
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
#define CONV_MIN_CALC_BLOCK C1NUM
void ConvolutionIm2ColBaseCPUKernel::InitGlobalVariable() {
oc_tile_ = C8NUM;
row_tile_ = C12NUM;
rowMajor2ColNMajorFunc = RowMajor2Col8Major;
}
int ConvolutionIm2ColBaseCPUKernel::InitTmpBuffer() {
MS_ASSERT(ctx_->allocator != nullptr);
CHECK_NULL_RETURN(out_tensors_[0]);
CHECK_NULL_RETURN(out_tensors_[0]->MutableData());
int unit_size =
conv_param_->kernel_h_ * conv_param_->kernel_w_ * conv_param_->input_channel_ * row_tile_ * thread_count_;
packed_input_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(unit_size * sizeof(float)));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed input failed.";
return RET_ERROR;
}
col_major_input_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(unit_size * sizeof(float)));
if (col_major_input_ == nullptr) {
MS_LOG(ERROR) << "malloc col_major_input_ failed.";
return RET_ERROR;
}
return RET_OK;
}
int ConvolutionIm2ColBaseCPUKernel::Prepare() {
CHECK_LESS_RETURN(in_tensors_.size(), C2NUM);
CHECK_LESS_RETURN(out_tensors_.size(), 1);
InitGlobalVariable();
if (op_parameter_->is_train_session_) {
auto filter_tensor = in_tensors_.at(kWeightIndex);
CHECK_NULL_RETURN(filter_tensor);
size_t in_channel = filter_tensor->Channel();
size_t out_channel = filter_tensor->Batch();
size_t oc_block_num = UP_ROUND(out_channel, oc_tile_);
size_t kernel_plane = filter_tensor->Height() * filter_tensor->Width();
size_t pack_weight_size = oc_block_num * in_channel * kernel_plane;
set_workspace_size(pack_weight_size * sizeof(float));
}
auto ret = InitConvWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
return RET_OK;
}
int ConvolutionIm2ColBaseCPUKernel::UpdateThreadNumProcess(int32_t kernel_type, int64_t per_unit_load_num,
int64_t per_unit_store_num, int64_t unit_num) {
if (conv_param_->input_batch_ % conv_param_->thread_num_ == 0) {
use_batch_cut_flag_ = true;
return RET_OK;
} else {
use_batch_cut_flag_ = false;
}
auto output_hw = conv_param_->output_h_ * conv_param_->output_w_;
conv_param_->thread_num_ =
MSMIN(UP_DIV(UP_DIV(output_hw, row_tile_), CONV_MIN_CALC_BLOCK), op_parameter_->thread_num_);
thread_count_ = conv_param_->thread_num_;
return RET_OK;
}
int ConvolutionIm2ColBaseCPUKernel::ReSize() {
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
ret = ConvolutionBaseCPUKernel::Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "conv base init failed.";
return ret;
}
if (UpdateThreadNumPass(TC_PTYPE(type_), 0, 0, 0) != RET_OK) {
return RET_ERROR;
}
return RET_OK;
}
int ConvolutionIm2ColBaseCPUKernel::RunImpl(int task_id) {
auto ori_input_data = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->data());
if (use_batch_cut_flag_) {
ConvFp32CutByBatch(ori_input_data, packed_input_, reinterpret_cast<float *>(packed_weight_),
reinterpret_cast<float *>(bias_data_), col_major_input_, tmp_output_, task_id, conv_param_);
} else {
ConvFp32(ori_input_data, packed_input_, reinterpret_cast<float *>(packed_weight_),
reinterpret_cast<float *>(bias_data_), col_major_input_, tmp_output_, task_id, conv_param_);
}
return RET_OK;
}
int ConvolutionIm2ColImpl(void *cdata, int task_id, float lhs_scale, float rhs_scale) {
auto conv = reinterpret_cast<ConvolutionIm2ColBaseCPUKernel *>(cdata);
auto error_code = conv->RunImpl(task_id);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "Convolution Run error task_id[" << task_id << "] error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
int ConvolutionIm2ColBaseCPUKernel::Run() {
auto ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
FreeTmpBuffer();
return RET_ERROR;
}
auto output_addr = reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->MutableData());
if (!output_need_align_) {
tmp_output_ = output_addr;
}
if (RepackWeight() != RET_OK) {
FreeTmpBuffer();
MS_LOG(ERROR) << "Repack weight failed.";
return RET_ERROR;
}
ret = ParallelLaunch(this->ms_context_, ConvolutionIm2ColImpl, this, thread_count_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "conv error error_code[" << ret << "]";
}
FreeTmpBuffer();
return ret;
}
void ConvolutionIm2ColBaseCPUKernel::PackWeight() {
auto filter_tensor = in_tensors_.at(kWeightIndex);
int32_t in_channel = filter_tensor->Channel();
if (in_channel < 0) {
MS_LOG(ERROR) << "get channel from filter_tensor failed.";
return;
}
int32_t out_channel = filter_tensor->Batch();
if (out_channel < 0) {
MS_LOG(ERROR) << "get batch from filter_tensor failed.";
return;
}
int32_t kernel_plane = filter_tensor->Height() * filter_tensor->Width();
if (kernel_plane < 0) {
MS_LOG(ERROR) << "get height and width from filter_tensor failed.";
return;
}
void *origin_weight = (op_parameter_->is_train_session_) ? filter_tensor->data() : origin_weight_;
MS_ASSERT(origin_weight != nullptr);
MS_ASSERT(rowMajor2ColNMajorFunc != nullptr);
rowMajor2ColNMajorFunc(reinterpret_cast<float *>(origin_weight), reinterpret_cast<float *>(packed_weight_),
out_channel, in_channel * kernel_plane);
}
int ConvolutionIm2ColBaseCPUKernel::MallocWeightBiasData() {
auto filter_tensor = in_tensors_.at(kWeightIndex);
int32_t in_channel = filter_tensor->Channel();
int32_t out_channel = filter_tensor->Batch();
MS_CHECK_TRUE_RET(in_channel > 0 && out_channel > 0, RET_ERROR);
conv_param_->input_channel_ = in_channel;
conv_param_->output_channel_ = out_channel;
size_t oc_block_num = UP_ROUND(out_channel, oc_tile_);
size_t kernel_plane = filter_tensor->Height() * filter_tensor->Width();
size_t pack_weight_size = oc_block_num * in_channel * kernel_plane;
if (!op_parameter_->is_train_session_) {
CHECK_LESS_RETURN(MAX_MALLOC_SIZE, pack_weight_size * sizeof(float));
packed_weight_ = lite::PackWeightManager::GetInstance()->GetPackData(
in_tensors_[1]->data(), static_cast<size_t>(pack_weight_size) * sizeof(float), &weight_is_packed_);
if (packed_weight_ == nullptr) {
MS_LOG(ERROR) << "malloc packed weight failed.";
return RET_ERROR;
}
}
if (bias_data_ == nullptr) {
CHECK_LESS_RETURN(MAX_MALLOC_SIZE, oc_block_num * sizeof(float));
bias_data_ = malloc(oc_block_num * sizeof(float));
if (bias_data_ == nullptr) {
MS_LOG(ERROR) << "malloc bias failed.";
return RET_ERROR;
}
}
memset(bias_data_, 0, oc_block_num * sizeof(float));
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -0,0 +1,79 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_BASE_FP32_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_BASE_FP32_H_
#include <vector>
#include "src/litert/lite_kernel.h"
#include "nnacl/op_base.h"
#include "src/litert/kernel/cpu/base/convolution_base.h"
namespace mindspore::kernel {
using RowMajor2ColNMajorFunc = void (*)(const float *src_ptr, float *dst_ptr, int row, int col);
int ConvolutionIm2ColImpl(void *cdata, int task_id, float lhs_scale, float rhs_scale);
class ConvolutionIm2ColBaseCPUKernel : public ConvolutionBaseCPUKernel {
public:
ConvolutionIm2ColBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
float *origin_weight, float *origin_bias)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias) {}
~ConvolutionIm2ColBaseCPUKernel() override {}
virtual void InitGlobalVariable();
int Prepare() override;
virtual int InitTmpBuffer();
int ReSize() override;
int Run() override;
virtual int RunImpl(int task_id);
protected:
int MallocWeightBiasData() override;
void PackWeight() override;
void FreeTmpBuffer() {
if (packed_input_ != nullptr) {
ctx_->allocator->Free(packed_input_);
packed_input_ = nullptr;
}
if (col_major_input_ != nullptr) {
ctx_->allocator->Free(col_major_input_);
col_major_input_ = nullptr;
}
if (output_need_align_ && tmp_output_ != nullptr) {
ctx_->allocator->Free(tmp_output_);
tmp_output_ = nullptr;
output_need_align_ = false;
}
}
private:
int UpdateThreadNumProcess(int32_t kernel_type, int64_t per_unit_load_num, int64_t per_unit_store_num,
int64_t unit_num) override;
protected:
float *tmp_output_ = nullptr;
float *packed_input_ = nullptr;
float *col_major_input_ = nullptr;
bool output_need_align_ = false;
int oc_tile_ = C8NUM; // oc tile is C8NUM in C
int row_tile_ = C12NUM; // oc tile is C12NUM in C
RowMajor2ColNMajorFunc rowMajor2ColNMajorFunc = nullptr;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_BASE_FP32_H_

View File

@ -0,0 +1,68 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/litert/kernel/cpu/fp32/convolution_im2col_fp32.h"
#include "src/litert/kernel/cpu/fp32/convolution_im2col_base_fp32.h"
#if defined(ENABLE_AVX)
#include "src/litert/kernel/cpu/fp32/convolution_im2col_avx_fp32.h"
#endif
#if defined(ENABLE_SSE)
#include "src/litert/kernel/cpu/fp32/convolution_im2col_sse_fp32.h"
#endif
#if defined(ENABLE_ARM32)
#include "src/litert/kernel/cpu/fp32/convolution_im2col_arm32_fp32.h"
#endif
#if defined(ENABLE_ARM64)
#include "src/litert/kernel/cpu/fp32/convolution_im2col_arm64_fp32.h"
#endif
namespace mindspore::kernel {
LiteKernel *CreateConvolutionIm2ColCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
float *origin_weight, float *origin_bias) {
LiteKernel *kernel = nullptr;
#if defined(ENABLE_AVX)
if (kernel == nullptr) {
kernel = new (std::nothrow)
kernel::ConvolutionIm2ColAVXCPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias);
}
#endif
#if defined(ENABLE_SSE)
if (kernel == nullptr) {
kernel = new (std::nothrow)
kernel::ConvolutionIm2ColSSECPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias);
}
#endif
#if defined(ENABLE_ARM64)
kernel = new (std::nothrow)
kernel::ConvolutionIm2ColARM64CPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias);
#elif defined(ENABLE_ARM32)
kernel = new (std::nothrow)
kernel::ConvolutionIm2ColARM32CPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias);
#endif
if (kernel == nullptr) {
kernel = new (std::nothrow)
kernel::ConvolutionIm2ColBaseCPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias);
}
return kernel;
}
} // namespace mindspore::kernel

View File

@ -0,0 +1,30 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_FP32_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_FP32_H_
#include <vector>
#include "src/litert/lite_kernel.h"
#include "nnacl/op_base.h"
#include "src/litert/kernel/cpu/base/convolution_base.h"
namespace mindspore::kernel {
LiteKernel *CreateConvolutionIm2ColCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
float *origin_weight, float *origin_bias);
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_FP32_H_

View File

@ -0,0 +1,26 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/litert/kernel/cpu/fp32/convolution_im2col_sse_fp32.h"
namespace mindspore::kernel {
void ConvolutionIm2ColSSECPUKernel::InitGlobalVariable() {
oc_tile_ = C8NUM;
row_tile_ = C4NUM;
rowMajor2ColNMajorFunc = RowMajor2Col8Major;
}
} // namespace mindspore::kernel

View File

@ -0,0 +1,36 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_SSE_FP32_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_SSE_FP32_H_
#include <vector>
#include "src/litert/kernel/cpu/fp32/convolution_im2col_base_fp32.h"
namespace mindspore::kernel {
class ConvolutionIm2ColSSECPUKernel : public ConvolutionIm2ColBaseCPUKernel {
public:
ConvolutionIm2ColSSECPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
float *origin_weight, float *origin_bias)
: ConvolutionIm2ColBaseCPUKernel(parameter, inputs, outputs, ctx, origin_weight, origin_bias) {}
~ConvolutionIm2ColSSECPUKernel() override {}
void InitGlobalVariable() override;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_CPU_FP32_CONVOLUTION_IM2COL_FP32_H_