Modify code to support dynamic graph.

This commit is contained in:
rick_sanchez 2020-05-26 09:14:40 +08:00 committed by kpy
parent 72fd41786c
commit e2a322b6b7
34 changed files with 673 additions and 72 deletions

View File

@ -19,14 +19,15 @@ Interfaces for parser module in c++.
from .parser import (Parser, create_obj_instance, generate_scope,
get_bprop_method_of_class, get_class_instance_type,
get_class_member_namespace_symbol, create_slice_obj,
get_dataclass_attributes, get_dataclass_methods,
get_dataclass_attributes, get_dataclass_methods, get_obj_id,
get_module_namespace, get_obj_type, get_object_key,
get_parse_method_of_class, get_scope_name,
get_default_input, get_parse_method_of_class, get_scope_name,
is_class_member, parse_cb, resolve_symbol, create_ellipsis_obj)
from .serialize import *
__all__ = ['parse_cb', 'get_parse_method_of_class', 'get_bprop_method_of_class', 'resolve_symbol',
'get_object_key', 'get_class_instance_type', 'is_class_member', 'get_obj_type',
'create_obj_instance', 'get_module_namespace', 'get_class_member_namespace_symbol',
'Parser', 'get_dataclass_attributes', 'get_dataclass_methods', 'dump_obj', 'load_obj',
'get_dataclass_methods', 'get_scope_name', 'create_slice_obj', 'create_ellipsis_obj']
'get_object_key', 'get_default_input', 'get_class_instance_type', 'is_class_member',
'get_obj_type', 'get_obj_id', 'create_obj_instance', 'get_module_namespace',
'get_class_member_namespace_symbol', 'get_obj_id', 'Parser', 'get_dataclass_attributes',
'get_dataclass_methods', 'dump_obj', 'load_obj', 'get_dataclass_methods', 'get_scope_name',
'create_slice_obj', 'create_ellipsis_obj']

View File

@ -209,6 +209,14 @@ def get_object_key(obj):
obj_id = instance_id + obj_id
return obj_id, obj_key
def get_default_input(obj):
if hasattr(obj, '__parameter__'):
return obj.default_input
if isinstance(obj, tuple):
convert = lambda x: x.default_input if hasattr(x, '__parameter__') else x
args = tuple(convert(x) for x in obj)
return args
return obj
def is_class_member(node):
"""Check the attr is class member variable."""
@ -221,6 +229,9 @@ def is_class_member(node):
return True
return False
def get_obj_id(obj):
"""Get the obj id."""
return str(id(obj))
def get_obj_type(obj):
"""Get the obj type."""

View File

@ -328,9 +328,6 @@ void FuncGraphManager::ProcessEdge(AnfNodePtr node, int index, AnfNodePtr inp, E
DropEdge(node, index, inp);
} else {
MS_LOG(DEBUG) << "Add node " << node->ToString() << " input[" << index << "] " << inp->ToString();
if (inp->func_graph() != nullptr) {
AddFuncGraph(inp->func_graph());
}
if (IsValueNode<FuncGraph>(inp)) {
MS_LOG(DEBUG) << "Input[" << index << "] is const graph " << inp->ToString();
AddFuncGraph(GetValueNode<FuncGraphPtr>(inp));
@ -372,9 +369,8 @@ void FuncGraphManager::AcquireNodes(const std::vector<AnfNodePtr> &nodes) {
for (auto &node : acq) {
MS_EXCEPTION_IF_NULL(node);
FuncGraphPtr fg = node->func_graph();
auto fg = node->func_graph();
if (fg != nullptr) {
AddFuncGraph(fg);
fg->AddNode(node);
}
ProcessInputs(node, kIncEdge);

View File

@ -28,7 +28,7 @@ namespace py = pybind11;
class ParamValuePy : public ParamValue {
public:
ParamValuePy() : value_(py::none()) {}
explicit ParamValuePy(py::object value) : value_(value) {}
explicit ParamValuePy(const py::object &value) : value_(value) {}
~ParamValuePy() override = default;
py::object value() { return value_; }

View File

@ -75,7 +75,7 @@ py::function PrimitivePy::GetComputeFunction() {
py::function vm_fn = get_fn(python_obj_);
if (py::isinstance<py::none>(vm_fn)) {
MS_LOG(DEBUG) << "Cannot find " << python_obj_.attr("__class__").attr("__name__").cast<std::string>();
MS_LOG(WARNING) << "Cannot find " << python_obj_.attr("__class__").attr("__name__").cast<std::string>();
vm_fn = mindspore::GetComputeFunction(Primitive::name());
}
return vm_fn;

View File

@ -81,6 +81,7 @@ Tensor::Tensor(const Tensor &tensor, const TypePtr &data_type)
: MetaTensor(tensor), device_address_(tensor.device_address_) {
init(tensor.data_, data_type);
dirty_ = tensor.is_dirty();
id_ = tensor.id();
}
Tensor &Tensor::operator=(const Tensor &tensor) {
@ -89,6 +90,7 @@ Tensor &Tensor::operator=(const Tensor &tensor) {
dirty_ = tensor.is_dirty();
device_address_ = tensor.device_address();
data_ = tensor.data_;
id_ = tensor.id();
}
return *this;
}
@ -208,6 +210,7 @@ void Tensor::init(const py::array &input, const TypeId &data_type) {
data_ = input;
}
dirty_ = true;
id_ = std::to_string((uintptr_t)(this));
}
void Tensor::init(TypeId data_type, const std::vector<int> &shape, py::array *const data) {
@ -254,6 +257,7 @@ void Tensor::init(TypeId data_type, const std::vector<int> &shape, py::array *co
MS_LOG(EXCEPTION) << "Cannot construct Tensor because of unsupported data type: " << data_type << ".";
break;
}
id_ = std::to_string((uintptr_t)(this));
}
TypePtr Tensor::SetDtype(const TypePtr type_ptr) {

View File

@ -263,9 +263,11 @@ class Tensor : public MetaTensor {
DeviceAddressPtr device_address() const { return device_address_; }
void set_device_address(const DeviceAddressPtr &device_address) { device_address_ = device_address; }
py::array data_sync();
std::string id() const { return id_; }
private:
bool dirty_{true};
std::string id_{""};
DeviceAddressPtr device_address_{nullptr};
};

View File

@ -501,10 +501,16 @@ GradOperation::GradOperation(const std::string &name, bool get_all, bool get_by_
}
FuncGraphPtr GradOperation::GetGrad(AnfNodePtr node, const AnfNodePtr &weights,
const std::vector<AnfNodePtr> &params_list, bool applyJ) {
const std::vector<AnfNodePtr> &params_list, const std::vector<AnfNodePtr> &args,
bool applyJ) {
FuncGraphPtr ret = std::make_shared<FuncGraph>();
ret->set_flags(FUNC_GRAPH_FLAG_CORE, true);
auto weights_node = weights;
if (weights == nullptr && !args.empty()) {
weights_node = ret->NewCNode(args);
}
ValueNodePtr opsJ = NewValueNode(prim::kPrimJ);
ValueNodePtr opsTupleItem = NewValueNode(prim::kPrimTupleGetItem);
@ -537,7 +543,7 @@ FuncGraphPtr GradOperation::GetGrad(AnfNodePtr node, const AnfNodePtr &weights,
inputs.push_back(NewValueNode(1));
AnfNodePtr ptrBprop = ret->NewCNode(inputs);
doGetGrad(ret, out, ptrBprop, weights, opsTupleItem);
doGetGrad(ret, out, ptrBprop, weights_node, opsTupleItem);
return ret;
}

View File

@ -129,7 +129,7 @@ class GradOperation : public MetaFuncGraph {
MS_DECLARE_PARENT(GradOperation, MetaFuncGraph)
FuncGraphPtr GetGrad(AnfNodePtr ptrNode, const AnfNodePtr &weights, const std::vector<AnfNodePtr> &ptrParams,
bool applyJ = false);
const std::vector<AnfNodePtr> &args = {}, bool applyJ = false);
FuncGraphPtr GenerateFuncGraph(const AbstractBasePtrList &args_spec_list) override;
bool sens_param() const { return sens_param_; }
bool get_all_;

View File

@ -285,6 +285,10 @@ AnfNodePtr BuildNewCNode(const FuncGraphPtr &func_graph, const std::string &func
// and add cast op on other inputs to keep the same type with assigned parameter.
for (size_t i = 0; i < args_spec_list.size(); ++i) {
AnfNodePtr param = params_list[i];
if (args_spec_list[i] == nullptr) {
op_inputs.push_back(param);
continue;
}
SignatureEnumRW sig = SignatureEnumRW::kRWDefault;
// If sig_size is 0 use defalut.
if (sig_size > 0 && i < sig_size) {
@ -292,6 +296,7 @@ AnfNodePtr BuildNewCNode(const FuncGraphPtr &func_graph, const std::string &func
} else if (has_var && i >= sig_size) {
sig = signature[sig_size - 1].rw;
}
TypePtr type = args_spec_list[i]->GetTypeTrack();
if (type && type->type_id() == kObjectTypeRef) {
if (sig == SignatureEnumRW::kRWRead) {

View File

@ -551,6 +551,10 @@ AdjointPtr DFunctor::FindAdjoint(const AnfNodePtr &primal) {
}
void DFunctor::CallDoutHoleOnTape() {
if (!is_top_) {
return;
}
// Call dout hole of all adjoint.
for (auto &f : func_graph_to_functor_) {
for (auto &adjoint : f.second->anfnode_to_adjoin_) {

View File

@ -55,6 +55,8 @@ class DFunctor {
FuncGraphPtr KUserDefined(const FuncGraphPtr &primal);
// Register functor objects to form a global view.
void Init(const DFunctorPtr &functor, bool is_top = false);
bool IsInScope(const AnfNodePtr &node);
// Clear resources.
static void Clear();
@ -62,7 +64,6 @@ class DFunctor {
// Map one morphism.
AdjointPtr MapMorphism(const AnfNodePtr &morph);
bool IsFreeMorphism(const AnfNodePtr &node);
bool IsInScope(const AnfNodePtr &node);
// Map morphism that's not attached to output.
void MapFreeMorphism();
void BackPropagateFv(const AnfNodePtr &fv, const AnfNodePtr &din);

View File

@ -23,7 +23,7 @@
namespace mindspore {
namespace ad {
FuncGraphPtr Grad(const FuncGraphPtr &func_graph, const pipeline::ResourceBasePtr &resources) {
FuncGraphPtr Grad(const FuncGraphPtr &func_graph, const pipeline::ResourceBasePtr &resources, bool is_top) {
MS_EXCEPTION_IF_NULL(func_graph);
auto gradkv = func_graph->transforms().find("grad");
if (gradkv != func_graph->transforms().end()) {
@ -46,14 +46,18 @@ FuncGraphPtr Grad(const FuncGraphPtr &func_graph, const pipeline::ResourceBasePt
auto user_defined = f->KUserDefined(func_graph);
if (user_defined != nullptr) {
multi_graph_sink(user_defined);
DFunctor::Clear();
if (is_top) {
DFunctor::Clear();
}
return user_defined;
}
f->Init(f, true);
f->Init(f, is_top);
f->MapObject();
f->MapMorphism();
auto ret = f->k_graph();
DFunctor::Clear();
if (is_top) {
DFunctor::Clear();
}
multi_graph_sink(ret);
return ret;
@ -71,5 +75,7 @@ MetaFuncGraphPtr Kmeta(const PrimitivePtr &prim, const pipeline::ResourceBasePtr
MetaFuncGraphPtr fg = g_k_prims.KMetaFuncGraph(prim);
return fg;
}
void CleanRes() { DFunctor::Clear(); }
} // namespace ad
} // namespace mindspore

View File

@ -28,9 +28,10 @@ namespace mindspore {
namespace ad {
using ResourcePtr = std::shared_ptr<pipeline::Resource>;
FuncGraphPtr Grad(const FuncGraphPtr &func_graph, const pipeline::ResourceBasePtr &resources);
FuncGraphPtr Grad(const FuncGraphPtr &func_graph, const pipeline::ResourceBasePtr &resources, bool is_top = true);
FuncGraphPtr Kprim(const ValueNodePtr &value_node, const pipeline::ResourceBasePtr &resources);
MetaFuncGraphPtr Kmeta(const PrimitivePtr &prim, const pipeline::ResourceBasePtr &);
void CleanRes();
} // namespace ad
} // namespace mindspore

View File

@ -167,7 +167,8 @@ class InlinerBase : public AnfVisitor {
auto params = fg->parameters();
auto old_size = params.size();
if (old_size != new_params.size()) {
MS_LOG(EXCEPTION) << "Parameter size not match.";
MS_LOG(EXCEPTION) << "Parameter size not match." << old_size << " new " << new_params.size()
<< fg->output()->DebugString(10);
}
for (size_t i = 0; i < old_size; i++) {
(void)mng->Replace(params[i], new_params[i]);

View File

@ -276,6 +276,8 @@ bool GeOptimizeAction(const ResourcePtr &res) { return OptimizeAction(res, kGePa
bool VmOptimizeAction(const ResourcePtr &res) { return OptimizeAction(res, kVmPasses); }
bool PynativeOptimizeAction(const ResourcePtr &res) { return OptimizeAction(res, kPynativePasses); }
static bool IsCtrlSink() {
auto ms_ctx = MsContext::GetInstance();
std::string device_target = ms_ctx->device_target();

View File

@ -35,6 +35,7 @@ bool SymbolResolveAction(const ResourcePtr &res);
bool AbstractSpecializeAction(const ResourcePtr &res);
bool GeOptimizeAction(const ResourcePtr &res);
bool VmOptimizeAction(const ResourcePtr &res);
bool PynativeOptimizeAction(const ResourcePtr &res);
bool TaskEmitAction(const ResourcePtr &res);
bool ExecuteAction(const ResourcePtr &res);

View File

@ -32,6 +32,7 @@
#include "utils/symbolic.h"
#include "utils/context/ms_context.h"
#include "debug/trace.h"
#include "optimizer/ad/grad.h"
namespace mindspore {
namespace parse {
@ -338,6 +339,9 @@ bool ConvertData(const py::object &obj, ValuePtr *const data, bool use_signature
} else if (py::hasattr(obj, PYTHON_ENVINSTANCE_FLAG)) {
std::shared_ptr<EnvInstance> env = obj.cast<std::shared_ptr<EnvInstance>>();
converted = env;
} else if (py::hasattr(obj, "__parameter__")) {
auto to_convert = py::cast<py::object>(python_adapter::GetPyObjAttr(obj, "default_input"));
ret = ConvertData(to_convert, &converted);
} else {
ret = ConvertOtherObj(obj, &converted);
}

View File

@ -60,6 +60,7 @@ const char PYTHON_MOD_RESOLVE_FUNCTION[] = "resolve_symbol";
const char PYTHON_MOD_RESOLVE_GET_OBJ_KEY[] = "get_object_key";
const char PYTHON_MOD_PARSE_CHECK_IS_CLASS_MEMBER[] = "is_class_member";
const char PYTHON_MOD_RESOLVE_GET_OBJ_TYPE[] = "get_obj_type";
const char PYTHON_MOD_GET_OBJ_ID[] = "get_obj_id";
const char PYTHON_MOD_GET_CLASS_INSTANCE_TYPE[] = "get_class_instance_type";
const char PYTHON_MOD_CREATE_OBJ_INSTANCE[] = "create_obj_instance";
const char PYTHON_MOD_GET_DATACLASS_ATTRS[] = "get_dataclass_attributes";
@ -83,6 +84,7 @@ const char PYTHON_PARSE_GET_SCOPE_NAME[] = "get_scope_name";
const char PYTHON_PARSE_CLASS_SLICE[] = "create_slice_obj";
const char PYTHON_PARSE_CLASS_ELLIPSIS[] = "create_ellipsis_obj";
const char PYTHON_MOD_GET_DEFAULT_INPUT[] = "get_default_input";
// define the common name
const char NAMED_PRIMITIVE_ITER[] = "iter";

View File

@ -278,5 +278,7 @@ std::vector<PassItem> kGePasses = {{"simplify_data_structures", SimplifyDataStru
{"opt_control", ControlGroup},
{"opt_prepare", PrepareGroup},
{"cconv", CconvPass}};
std::vector<PassItem> kPynativePasses = {{"opt_a", OptPassAGroup}, {"opt_b", OptPassBGroup}, {"cconv", CconvPass}};
} // namespace pipeline
} // namespace mindspore

View File

@ -29,6 +29,7 @@ using PassItem = std::pair<std::string, std::function<bool(ResourcePtr)>>;
extern std::vector<PassItem> kGePasses;
extern std::vector<PassItem> kVmPasses;
extern std::vector<PassItem> kPynativePasses;
bool CconvPass(const ResourcePtr &res);
bool ValidatePass(const ResourcePtr &res);

View File

@ -608,7 +608,7 @@ void Pipeline::Run() {
MS_LOG(INFO) << "End";
}
void ExecutorPy::ProcessVmArg(const py::tuple &args, const std::string &phase, VectorRef *arg_list) {
void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef *arg_list) {
std::size_t size = args.size();
for (std::size_t i = 0; i < size; i++) {
@ -625,7 +625,6 @@ void ExecutorPy::ProcessVmArg(const py::tuple &args, const std::string &phase, V
arg_list->push_back(converted);
}
ResourcePtr res = GetResource(phase);
MS_EXCEPTION_IF_NULL(res);
auto graph = res->func_graph();
MS_EXCEPTION_IF_NULL(graph);
@ -647,6 +646,10 @@ void ExecutorPy::ProcessVmArg(const py::tuple &args, const std::string &phase, V
}
}
void ExecutorPy::ProcessVmArg(const py::tuple &args, const std::string &phase, VectorRef *arg_list) {
ProcessVmArgInner(args, GetResource(phase), arg_list);
}
py::object ExecutorPy::Run(const py::tuple &args, const py::object &phase) {
std::size_t size = args.size();
if (!py::isinstance<py::str>(phase)) {
@ -874,6 +877,8 @@ void ClearResAtexit() {
compile::ClearConvertCache();
pipeline::GetMethodMap().clear();
pipeline::ExecutorPy::ClearRes();
pipeline::ReclaimOptimizer();
pynative::PynativeExecutor::GetInstance()->Clean();
#ifdef ENABLE_GE
transform::DfGraphManager::GetInstance().ClearGraph();
transform::DfGraphConvertor::get_adpt_map().clear();

View File

@ -139,6 +139,8 @@ bool InitExecDatasetVm(const std::string &queue_name, int64_t size, int64_t batc
const std::vector<TypePtr> &types, const std::vector<std::vector<int64_t>> &shapes,
const std::vector<int64_t> &input_indexes, bool need_run);
void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef *arg_list);
} // namespace pipeline
} // namespace mindspore

View File

@ -22,17 +22,30 @@
#include <unordered_set>
#include <algorithm>
#include "ir/param_value_py.h"
#include "utils/any.h"
#include "utils/utils.h"
#include "utils/context/ms_context.h"
#include "operator/ops.h"
#include "operator/composite/composite.h"
#include "operator/composite/do_signature.h"
#include "pipeline/parse/data_converter.h"
#include "pipeline/parse/parse_base.h"
#include "pipeline/parse/resolve.h"
#include "pipeline/static_analysis/prim.h"
#include "session/session_factory.h"
#include "pre_activate/pass/const_input_to_attr_registry.h"
#include "pre_activate/common/helper.h"
#include "pipeline/action.h"
#include "pynative/base.h"
#include "pybind_api/api_register.h"
#include "vm/transform.h"
#include "optimizer/ad/grad.h"
#include "pipeline/resource.h"
#include "pipeline/pipeline.h"
#include "pipeline/pass.h"
#ifdef ENABLE_GE
#include "pynative/pynative_execute_ge.h"
@ -40,21 +53,55 @@
const char SINGLE_OP_GRAPH[] = "single_op_graph";
// primitive unable to infer value for constant input in PyNative mode
const std::set<std::string> vm_operators = {"partial", "depend", "make_ref", "zeros_like_tensor"};
const std::set<std::string> vm_operators = {"partial", "depend", "make_ref", "zeros_like_tensor", "HookBackward"};
namespace mindspore {
namespace pynative {
static std::shared_ptr<session::SessionBasic> session = nullptr;
PynativeExecutorPtr PynativeExecutor::executor_ = nullptr;
std::mutex PynativeExecutor::instance_lock_;
ResourcePtr PynativeExecutor::resource_;
inline ValuePtr PyAttrValue(const py::object &obj) {
ValuePtr converted_ret = nullptr;
bool converted = parse::ConvertData(obj, &converted_ret);
if (!converted) {
ValuePtr converted_ret = parse::data_converter::PyDataToValue(obj);
if (!converted_ret) {
MS_LOG(EXCEPTION) << "Attribute convert error with type:" << std::string(py::str(obj));
}
return converted_ret;
}
py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::tuple &py_args) {
std::string GetId(const py::object &obj) {
py::object to_process = obj;
std::string prefix = "";
if (py::isinstance<py::tuple>(to_process)) {
auto p_list = py::cast<py::tuple>(to_process);
to_process = p_list[0];
prefix = "tuple:";
if (!py::isinstance<tensor::Tensor>(to_process)) {
std::string key = "";
for (size_t i = 0; i < p_list.size(); ++i) {
key += std::string(py::str(p_list[i])) + ":";
}
return prefix + key;
}
}
if (py::isinstance<py::int_>(to_process)) {
return prefix + std::string(py::str(to_process));
}
if (py::isinstance<py::float_>(to_process)) {
return prefix + std::string(py::str(to_process));
}
if (py::isinstance<tensor::Tensor>(to_process)) {
auto tensor_ptr = py::cast<tensor::TensorPtr>(to_process);
return prefix + tensor_ptr->id();
}
py::object ret = parse::python_adapter::CallPyFn(parse::PYTHON_MOD_PARSE_MODULE, parse::PYTHON_MOD_GET_OBJ_ID, obj);
return py::cast<std::string>(ret);
}
py::list ConvertInputs(const PrimitivePyPtr &prim, const py::list &py_args) {
auto signature = prim->signatures();
std::vector<SignatureEnumDType> dtypes;
(void)std::transform(signature.begin(), signature.end(), std::back_inserter(dtypes),
@ -87,7 +134,7 @@ py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::tuple &py_args) {
}
(void)dst_type.insert(std::make_pair(type, m_index));
}
py::tuple py_inputs(py_args.size());
py::list py_inputs(py_args.size());
for (size_t i = 0; i < py_args.size(); ++i) {
auto it = dst_type.find(dtypes[i]);
if (it != dst_type.end() && it->second != i &&
@ -105,12 +152,12 @@ py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::tuple &py_args) {
return py_inputs;
}
void PynativeInfer(const PrimitivePyPtr &prim, const py::tuple &py_args, OpExecInfo *const op_exec_info) {
void PynativeInfer(const PrimitivePyPtr &prim, const py::list &py_args, OpExecInfo *const op_exec_info) {
size_t size = py_args.size();
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < size; i++) {
ValuePtr input_value = PyAttrValue(py_args[i]);
if (py::isinstance<tensor::Tensor>(py_args[i])) {
if (input_value->isa<tensor::Tensor>()) {
args_spec_list.emplace_back(abstract::FromValueInside(input_value, true));
} else {
args_spec_list.emplace_back(abstract::FromValueInside(input_value, false));
@ -120,6 +167,12 @@ void PynativeInfer(const PrimitivePyPtr &prim, const py::tuple &py_args, OpExecI
op_exec_info->abstract = infer_res;
}
py::object GetTupleObj(const py::object &obj) {
py::module mod = parse::python_adapter::GetPyModule(parse::PYTHON_MOD_PARSE_MODULE);
py::object obj_tuple = parse::python_adapter::CallPyModFn(mod, parse::PYTHON_MOD_GET_DEFAULT_INPUT, obj);
return obj_tuple;
}
OpExecInfoPtr GenerateOpExecInfo(const py::args &args) {
if (args.size() != PY_ARGS_NUM) {
MS_LOG(ERROR) << "Four args are needed by RunOp";
@ -133,14 +186,19 @@ OpExecInfoPtr GenerateOpExecInfo(const py::args &args) {
if (pyobj == nullptr) {
MS_LOG(EXCEPTION) << "pyobj is empty";
}
py::tuple py_args = ConvertInputs(prim, args[PY_INPUTS]);
py::list py_args = ConvertInputs(prim, args[PY_INPUTS]);
// use python infer method
if (ignore_infer_prim.find(op_exec_info->op_name) == ignore_infer_prim.end()) {
PynativeInfer(prim, py_args, op_exec_info.get());
}
op_exec_info->py_primitive = prim;
op_exec_info->op_attrs = py::getattr(args[PY_PRIM], "attrs");
op_exec_info->op_inputs = py_args;
size_t input_num = py_args.size();
op_exec_info->op_inputs = py::tuple(input_num);
for (size_t i = 0; i < input_num; ++i) {
auto obj = py_args[i];
op_exec_info->op_inputs[i] = GetTupleObj(obj);
}
op_exec_info->inputs_mask = args[PY_INPUT_MASK];
if (op_exec_info->op_inputs.size() != op_exec_info->inputs_mask.size()) {
MS_LOG(ERROR) << "Op:" << op_exec_info->op_name << " inputs size not equal op_mask";
@ -154,9 +212,13 @@ std::string GetSingleOpGraphInfo(const OpExecInfoPtr &op_exec_info,
MS_EXCEPTION_IF_NULL(op_exec_info);
std::string graph_info;
// get input tensor info
for (const auto &input_tensor : input_tensors) {
MS_EXCEPTION_IF_NULL(input_tensor);
(void)graph_info.append(input_tensor->GetShapeAndDataTypeInfo() + "_");
size_t input_num = op_exec_info->op_inputs.size();
for (size_t index = 0; index < input_num; ++index) {
auto input = op_exec_info->op_inputs[index];
if (py::isinstance<tensor::Tensor>(input)) {
auto tensor_ptr = py::cast<tensor::TensorPtr>(input);
(void)graph_info.append(tensor_ptr->GetShapeAndDataTypeInfo() + "_");
}
}
// get prim and abstract info
MS_EXCEPTION_IF_NULL(op_exec_info->abstract);
@ -171,6 +233,23 @@ py::object RunOpInVM(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *stat
MS_EXCEPTION_IF_NULL(status);
MS_EXCEPTION_IF_NULL(op_exec_info);
MS_EXCEPTION_IF_NULL(op_exec_info->py_primitive);
if (op_exec_info->op_name == "HookBackward") {
auto op_inputs = op_exec_info->op_inputs;
py::tuple result(op_inputs.size());
for (size_t i = 0; i < op_inputs.size(); i++) {
py::object input = op_inputs[i];
if (py::hasattr(input, "__parameter__")) {
result[i] = py::getattr(input, "data");
} else {
auto tensor = py::cast<tensor::TensorPtr>(op_inputs[i]);
auto new_tensor = std::make_shared<tensor::Tensor>(tensor->data());
result[i] = new_tensor;
}
}
*status = PYNATIVE_SUCCESS;
MS_LOG(INFO) << "RunOpInVM end";
return std::move(result);
}
auto func = op_exec_info->py_primitive->GetComputeFunction();
if (py::isinstance<py::none>(func)) {
MS_LOG(ERROR) << "VM failed to get func";
@ -288,7 +367,6 @@ void ConstructInputTensor(const OpExecInfoPtr &op_run_info, std::vector<int> *te
opt::ConstInputToAttrInfoRegister reg;
bool reg_exist = opt::ConstInputToAttrInfoRegistry::Instance().GetRegisterByOpName(op_run_info->op_name, &reg);
size_t input_num = op_run_info->op_inputs.size();
MS_LOG(INFO) << "py input size: " << input_num;
for (size_t index = 0; index < input_num; ++index) {
// convert const input to attr
if (reg_exist &&
@ -386,7 +464,56 @@ py::object RunOpWithBackendPolicy(MsBackendPolicy backend_policy, const OpExecIn
return result;
}
AnfNodePtr PynativeExecutor::MakeCNode(const py::args &args, const py::tuple &out) {
if (!grad_flag_ || graph_info_map_.size() == 0) {
return nullptr;
}
std::vector<AnfNodePtr> inputs;
auto prim = py::cast<PrimitivePyPtr>(args[PY_PRIM]);
inputs.push_back(NewValueNode(prim));
py::tuple op_masks = args[PY_INPUT_MASK];
py::list op_args = args[PY_INPUTS];
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < op_args.size(); i++) {
auto node = GetInput(op_args[i], op_masks[i]);
args_spec_list.push_back(node->abstract());
inputs.push_back(node);
}
auto cnode = curr_g_->NewCNode(inputs);
MS_LOG(DEBUG) << "MakeCnode set node " << cnode->DebugString();
py::object out_real = out;
if (out.size() == 1) {
MS_LOG(DEBUG) << "MakeCnode out size is one.";
out_real = out[0];
}
std::string obj_id = GetId(out_real);
if (py::isinstance<py::tuple>(out_real)) {
auto value = py::cast<py::tuple>(out_real);
if (value.size() > 1) {
for (int i = 0; i < static_cast<int>(value.size()); i++) {
auto value_id = GetId(value[i]);
set_obj_node_map(curr_g_, value_id, cnode, i);
}
}
}
set_obj_node_map(curr_g_, obj_id, cnode);
set_pyobj(curr_g_, obj_id);
return cnode;
}
AnfNodePtr PynativeExecutor::GetObjNode(const py::object &obj) {
auto &out = graph_info_map_[curr_g_].obj_node_map[GetId(obj)];
if (out.second == -1) {
return out.first;
}
std::vector<AnfNodePtr> tuple_get_item_inputs{NewValueNode(prim::kPrimTupleGetItem), out.first,
NewValueNode(out.second)};
return curr_g_->NewCNode(tuple_get_item_inputs);
}
py::tuple RunOp(const py::args &args) {
MS_LOG(DEBUG) << "RunOp start" << args.size();
py::object result;
// returns a null py::tuple on error
py::tuple err_ret(0);
@ -428,10 +555,298 @@ py::tuple RunOp(const py::args &args) {
return err_ret;
}
MS_LOG(INFO) << "RunOp end";
auto node = PynativeExecutor::GetInstance()->MakeCNode(args, result);
if (node != nullptr) {
node->set_abstract(op_exec_info->abstract);
MS_LOG(DEBUG) << "RunOp MakeCnode,new node is: " << node->DebugString();
}
MS_LOG(DEBUG) << "RunOp end";
return result;
}
void ClearPyNativeSession() { session = nullptr; }
PynativeExecutor::~PynativeExecutor() { Clean(); }
PynativeExecutor::PynativeExecutor() { grad_flag_ = false; }
void PynativeExecutor::NewGraph(const py::object &cell, const py::args &args) {
auto cell_id = GetId(cell);
if (cell_graph_map_.count(cell_id) != 0) {
MS_LOG(DEBUG) << "Newgraph already compiled";
return;
}
auto g = std::make_shared<FuncGraph>();
if (top_g_ == nullptr) {
top_g_ = curr_g_ = g;
df_builder_ = std::make_shared<FuncGraph>();
MS_LOG(DEBUG) << "First new graph" << top_g_.get();
Pushp();
} else {
Pushp();
curr_g_ = g;
}
if (graph_info_map_.count(g) == 0) {
graph_info_map_[g] = GraphInfo();
}
for (size_t i = 0; i < args.size(); i++) {
auto new_param = g->add_parameter();
std::string param_obj = GetId(args[i]);
graph_info_map_[g].param_map[param_obj] = new_param;
}
}
AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &op_mask) {
AnfNodePtr node = nullptr;
std::string obj_id = GetId(obj);
if (op_mask != nullptr && py::cast<bool>(op_mask)) {
MS_LOG(DEBUG) << "Topgraph free parameter";
// get the parameter name from parameter object
auto name_attr = mindspore::parse::python_adapter::GetPyObjAttr(obj, "name");
if (py::isinstance<py::none>(name_attr)) {
MS_LOG(EXCEPTION) << "Parameter object should have name attribute";
}
std::string param_name = py::cast<std::string>(name_attr);
if (graph_info_map_[df_builder_].param_map.count(obj_id) == 0) {
auto free_param = df_builder_->add_parameter();
free_param->set_name(param_name);
auto free_param_new = std::make_shared<ParamValuePy>(obj);
free_param->set_default_param(free_param_new);
free_param->debug_info()->set_name(param_name);
MS_LOG(DEBUG) << "Top graph set free parameter " << obj_id;
graph_info_map_[df_builder_].param_map[obj_id] = free_param;
return free_param;
}
return graph_info_map_[df_builder_].param_map[obj_id];
}
// if input is graph output
if (graph_info_map_[curr_g_].param_map.count(obj_id) != 0) {
// op(x, y)
node = graph_info_map_[curr_g_].param_map[obj_id];
} else if (graph_info_map_[curr_g_].obj_node_map.count(obj_id) != 0) {
// out = op(op1(x, y))
// out = op(cell1(x, y))
// out = op(cell1(x, y)[0])
node = GetObjNode(obj);
} else {
// out = op(x, 1)
ValuePtr converted_ret = nullptr;
parse::ConvertData(obj, &converted_ret);
node = NewValueNode(converted_ret);
set_obj_node_map(curr_g_, obj_id, node);
}
MS_LOG(DEBUG) << "Now getinput " << py::str(obj) << " node " << node->ToString();
return node;
}
void PynativeExecutor::Pushp() { graph_p_.push(curr_g_); }
void PynativeExecutor::Popp() {
if (graph_p_.empty()) {
MS_LOG(EXCEPTION) << "Stack graph_p_ is empty";
}
curr_g_ = graph_p_.top();
graph_p_.pop();
}
void PynativeExecutor::EndGraph(const py::object &cell, const py::object &out, const py::args &args) {
auto cell_id = GetId(cell);
if (cell_graph_map_.count(cell_id) != 0) {
MS_LOG(DEBUG) << "Endgraph already compiled";
return;
}
cell_graph_map_[cell_id] = curr_g_;
auto out_id = GetId(out);
if (!graph_info_map_[curr_g_].obj_node_map.count(out_id)) {
MS_LOG(ERROR) << "graph has no this out: " << out_id;
return;
}
auto output_node = GetObjNode(out);
curr_g_->set_output(output_node);
std::vector<AnfNodePtr> inputs;
inputs.push_back(NewValueNode(curr_g_));
MS_LOG(DEBUG) << "Current graph" << curr_g_->output()->DebugString();
resource_->manager()->AddFuncGraph(curr_g_);
auto newfg = ad::Grad(curr_g_, resource_, curr_g_ == top_g_);
if (curr_g_ != top_g_) {
Popp();
for (size_t i = 0; i < args.size(); i++) {
auto input = GetInput(args[i], py::object());
inputs.push_back(input);
}
auto out_cnode = curr_g_->NewCNode(inputs);
set_pyobj(curr_g_, GetId(cell));
set_obj_node_map(curr_g_, GetId(out), out_cnode);
} else {
parse::ResolveFuncGraph(newfg, resource_);
resource_->set_func_graph(newfg);
}
}
void PynativeExecutor::GradNet(const GradOperationPtr &grad, const py::object &cell, const py::object &weights,
const py::args &args) {
MS_LOG(INFO) << "GradNet start" << args.size();
std::size_t size = args.size();
auto cell_id = GetId(cell);
if (graph_map_.count(cell_id) != 0) {
MS_LOG(DEBUG) << "GradNet already compiled";
return;
}
MS_LOG(DEBUG) << "GradNet first compiled";
std::vector<AnfNodePtr> new_params;
for (size_t i = 0; i < size; i++) {
ParameterPtr p = std::make_shared<Parameter>(df_builder_);
new_params.push_back(p);
}
MS_LOG(DEBUG) << "GradNet start weight size" << df_builder_->parameters().size();
new_params.insert(new_params.end(), df_builder_->parameters().begin(), df_builder_->parameters().end());
df_builder_->set_parameters(new_params);
resource_->manager()->SetParameters(df_builder_, new_params);
std::vector<AnfNodePtr> w_args;
if (py::hasattr(weights, "__parameter_tuple__")) {
auto tuple = weights.cast<py::tuple>();
MS_LOG(DEBUG) << "GradNet start weights tuple size" << tuple.size();
w_args.push_back(NewValueNode(prim::kPrimMakeTuple));
for (size_t it = 0; it < tuple.size(); ++it) {
auto param = tuple[it];
auto param_id = GetId(param);
AnfNodePtr para_node = nullptr;
if (graph_info_map_[df_builder_].param_map.count(param_id)) {
para_node = graph_info_map_[df_builder_].param_map[param_id];
AnfNodePtr value = parse::GetMixedPrecisionCastHelp(df_builder_, para_node);
AnfNodePtr make_ref = NewValueNode(prim::kPrimMakeRef);
auto refkey = std::make_shared<RefKey>(para_node->cast<ParameterPtr>()->name());
AnfNodePtr ref_key_node = NewValueNode(refkey);
AnfNodePtr ref_node = df_builder_->NewCNode({make_ref, ref_key_node, value, para_node});
w_args.push_back(ref_node);
}
}
} else {
MS_LOG(EXCEPTION) << "training not paramter_tuple";
}
MS_EXCEPTION_IF_NULL(resource_->func_graph());
auto g = GradGraph(resource_->func_graph(), grad, w_args, size);
resource_->set_func_graph(g);
// get the parameters items and add the value to args_spec
abstract::AbstractBasePtrList args_spec;
for (std::size_t i = 0; i < size; i++) {
ValuePtr converted = nullptr;
bool succ = parse::ConvertData(args[i], &converted);
if (!succ) {
MS_LOG(EXCEPTION) << "Args convert error";
}
bool broaden = true;
auto abs = abstract::FromValue(converted, broaden);
args_spec.push_back(abs);
auto param_node = std::static_pointer_cast<Parameter>(df_builder_->parameters()[i]);
param_node->set_abstract(abs);
}
for (const auto &param : df_builder_->parameters()) {
auto param_node = std::static_pointer_cast<Parameter>(param);
if (param_node->has_default()) {
auto param_value = std::dynamic_pointer_cast<ParamValuePy>(param_node->default_param());
AbstractBasePtr ptr = abstract::FromValue(parse::data_converter::PyDataToValue(param_value->value()), true);
if (ptr == nullptr) {
MS_LOG(EXCEPTION) << "Args convert error";
}
args_spec.push_back(ptr);
param_node->set_abstract(ptr);
}
}
MS_LOG(DEBUG) << "Args_spec size" << args_spec.size();
resource_->set_args_spec(args_spec);
MS_LOG(DEBUG) << "Start opt";
// Create backend and session
resource_->results()[pipeline::kBackend] = compile::CreateBackend();
graph_map_[cell_id] = g;
PynativeOptimizeAction(resource_);
TaskEmitAction(resource_);
ExecuteAction(resource_);
resource_->Clean();
ad::CleanRes();
pipeline::ReclaimOptimizer();
}
void PynativeExecutor::Clear() {
MS_LOG(INFO) << "Clear all res";
top_g_ = curr_g_ = nullptr;
std::stack<FuncGraphPtr>().swap(graph_p_);
graph_info_map_.clear();
}
void PynativeExecutor::Clean() {
graph_map_.clear();
cell_graph_map_.clear();
Clear();
resource_.reset();
}
py::object PynativeExecutor::Run(const py::tuple &args, const py::object &phase) {
VectorRef arg_list;
pipeline::ProcessVmArgInner(args, resource_, &arg_list);
if (resource_->results().find(pipeline::kOutput) == resource_->results().end() ||
!resource_->results()[pipeline::kOutput].is<compile::VmEvalFuncPtr>()) {
MS_LOG(EXCEPTION) << "Can't find run graph func for ";
}
compile::VmEvalFuncPtr run = resource_->results()[pipeline::kOutput].cast<compile::VmEvalFuncPtr>();
if (run == nullptr) {
MS_LOG(EXCEPTION) << "Can't find run graph func for ";
}
std::string backend = MsContext::GetInstance()->backend_policy();
MS_LOG(DEBUG) << "Eval run" << backend;
BaseRef value = (*run)(arg_list);
MS_LOG(DEBUG) << "Run end" << value.ToString();
return BaseRefToPyData(value);
}
FuncGraphPtr PynativeExecutor::GradGraph(FuncGraphPtr g, const GradOperationPtr &grad_op,
const std::vector<AnfNodePtr> &weights, size_t arg_size) {
auto nparam = top_g_->parameters().size();
std::ostringstream ss;
ss << "grad{" << nparam << "}";
df_builder_->set_flags(FUNC_GRAPH_FLAG_CORE, true);
df_builder_->debug_info()->set_name(ss.str());
auto df = grad_op->GetGrad(NewValueNode(g), nullptr, top_g_->parameters(), weights);
std::vector<AnfNodePtr> inputs = {NewValueNode(df)};
for (size_t i = 0; i < arg_size; ++i) {
inputs.push_back(df_builder_->parameters()[i]);
}
auto out = df_builder_->NewCNode(inputs);
df_builder_->set_output(out);
resource_->manager()->AddFuncGraph(df);
resource_->manager()->AddFuncGraph(df_builder_);
return df_builder_;
}
REGISTER_PYBIND_DEFINE(PynativeExecutor_, ([](const py::module *m) {
(void)py::class_<PynativeExecutor, std::shared_ptr<PynativeExecutor>>(*m, "PynativeExecutor_")
.def_static("get_instance", &PynativeExecutor::GetInstance, "PynativeExecutor get_instance.")
.def("new_graph", &PynativeExecutor::NewGraph, "pynative new a graph.")
.def("end_graph", &PynativeExecutor::EndGraph, "pynative end a graph.")
.def("grad_net", &PynativeExecutor::GradNet, "pynative grad graph.")
.def("clear", &PynativeExecutor::Clear, "pynative clear status.")
.def("__call__", &PynativeExecutor::Run, py::arg("args"), py::arg("phase") = py::str(""),
"Executor run function.")
.def("set_grad_flag", &PynativeExecutor::set_grad_flag, py::arg("flag") = py::bool_(false),
"Executor set grad flag.");
}));
} // namespace pynative
} // namespace mindspore

View File

@ -22,23 +22,93 @@
#include <string>
#include <memory>
#include <unordered_map>
#include <mutex>
#include <stack>
#include "pybind11/pybind11.h"
#include "pynative/base.h"
#include "utils/context/ms_context.h"
#include "ir/anf.h"
#include "pipeline/resource.h"
#include "operator/composite/composite.h"
namespace mindspore {
namespace pynative {
namespace py = pybind11;
using ResourcePtr = std::shared_ptr<pipeline::Resource>;
using GradOperationPtr = std::shared_ptr<prim::GradOperation>;
py::object RunOpInVM(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *status);
py::tuple RunOp(const py::args &args);
py::list ConvertInputs(const PrimitivePyPtr &prim, const py::list &py_args);
void ClearPyNativeSession();
struct GraphInfo {
std::unordered_map<std::string, AnfNodePtr> param_map;
std::unordered_map<std::string, std::pair<AnfNodePtr, int>> obj_node_map;
AnfNodePtr output;
std::vector<std::string> objects;
};
class PynativeExecutor : public std::enable_shared_from_this<PynativeExecutor> {
public:
static std::shared_ptr<PynativeExecutor> GetInstance() {
std::lock_guard<std::mutex> i_lock(instance_lock_);
if (executor_ == nullptr) {
executor_ = std::shared_ptr<PynativeExecutor>(new (std::nothrow) PynativeExecutor());
resource_ = std::make_shared<pipeline::Resource>();
}
return executor_;
}
void NewGraph(const py::object &cell, const py::args &args);
void EndGraph(const py::object &cell, const py::object &out, const py::args &args);
void GradNet(const GradOperationPtr &grad, const py::object &cell, const py::object &weights, const py::args &args);
void Clear();
void Clean();
bool grad_flag() { return grad_flag_; }
void set_grad_flag(bool flag) { grad_flag_ = flag; }
AnfNodePtr GetInput(const py::object &obj, const py::object &op_mask);
AnfNodePtr GetObjNode(const py::object &obj);
FuncGraphPtr curr_g() { return curr_g_; }
void set_pyobj(FuncGraphPtr g, const std::string obj) { graph_info_map_[g].objects.push_back(obj); }
void set_obj_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node) {
graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, -1);
}
void set_obj_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, int index) {
graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, index);
}
AnfNodePtr MakeCNode(const py::args &args, const py::tuple &out);
py::object Run(const py::tuple &args, const py::object &phase);
void Pushp();
void Popp();
FuncGraphPtr GradGraph(FuncGraphPtr g, const GradOperationPtr &grad_op, const std::vector<AnfNodePtr> &weights,
size_t arg_size);
~PynativeExecutor();
private:
PynativeExecutor();
static std::shared_ptr<PynativeExecutor> executor_;
static std::mutex instance_lock_;
static ResourcePtr resource_;
bool grad_flag_;
std::unordered_map<std::string, FuncGraphPtr> graph_map_;
std::unordered_map<std::string, FuncGraphPtr> cell_graph_map_;
std::unordered_map<FuncGraphPtr, GraphInfo> graph_info_map_;
std::stack<FuncGraphPtr> graph_p_;
FuncGraphPtr top_g_;
FuncGraphPtr df_builder_;
FuncGraphPtr curr_g_;
};
using PynativeExecutorPtr = std::shared_ptr<PynativeExecutor>;
} // namespace pynative
} // namespace mindspore

View File

@ -20,7 +20,7 @@ from collections import OrderedDict
from functools import wraps
from mindspore import context
from mindspore import log as logger
from .._c_expression import generate_key, Executor_, Tensor, MetaTensor
from .._c_expression import generate_key, Executor_, Tensor, MetaTensor, PynativeExecutor_
from .._c_expression import verify_inputs_signature, init_exec_dataset, _set_dataset_mode_config, init_backend
from .tensor import Tensor as MsTensor
@ -273,6 +273,34 @@ def _generate_pip_args(obj, *args, method="construct"):
obj.__parse_method__ = parse_method
return args_names, args_list
class _PynativeExecutor:
"""
An pynative executor used to compile/manage/run graph.
Returns:
Graph, return the result of pipeline running.
"""
def __init__(self):
self._executor = PynativeExecutor_.get_instance()
def new_graph(self, obj, *args):
self._executor.new_graph(obj, *args)
def end_graph(self, obj, output, *args):
self._executor.end_graph(obj, output, *args)
def grad(self, grad, obj, weights, *args):
self._executor.grad_net(grad, obj, weights, *args)
def clear(self):
self._executor.clear()
def set_grad_flag(self, flag):
self._executor.set_grad_flag(flag)
def __call__(self, *args):
return self._executor(args, "")
class _Executor:
"""
@ -500,5 +528,6 @@ class _Executor:
_executor = _Executor()
_pynative_exec = _PynativeExecutor()
__all__ = ['ms_function']

View File

@ -89,7 +89,6 @@ class Tensor(Tensor_):
return hash(id(self))
def __mul__(self, other):
check_type('tensor input_data', other, (Tensor, float, int))
out = tensor_operator_registry.get('__mul__')(self, other)
return out
@ -101,7 +100,6 @@ class Tensor(Tensor_):
return out
def __radd__(self, other):
check_type('tensor operation input', other, (Tensor, float, int))
out = tensor_operator_registry.get('__add__')(other, self)
return out
@ -110,22 +108,18 @@ class Tensor(Tensor_):
return out
def __rmul__(self, other):
check_type('tensor operation input', other, (Tensor, float, int))
out = tensor_operator_registry.get('__mul__')(other, self)
return out
def __truediv__(self, other):
check_type('tensor operation input', other, (Tensor, float, int))
out = tensor_operator_registry.get('__div__')(self, other)
return out
def __rtruediv__(self, other):
check_type('tensor operation input', other, (Tensor, float, int))
out = tensor_operator_registry.get('__div__')(other, self)
return out
def __sub__(self, other):
check_type('tensor operation input', other, (Tensor, float, int))
out = self.__add__(-other)
return out
@ -134,7 +128,6 @@ class Tensor(Tensor_):
return out
def __rsub__(self, other):
check_type('tensor operation input', other, (Tensor, float, int))
out = tensor_operator_registry.get('__add__')(other, Tensor(-self.asnumpy()))
return out

View File

@ -19,7 +19,7 @@ from collections import OrderedDict
from mindspore import log as logger
from .. import context
from ..common import dtype as mstype
from ..common.api import _executor
from ..common.api import _executor, _pynative_exec
from .._checkparam import _check_str_by_regular
from ..common.parameter import Parameter, ParameterTuple
from .._c_expression import init_backend
@ -60,6 +60,7 @@ class Cell:
self._params = OrderedDict()
self._cells = OrderedDict()
self.training = False
self.requires_grad = False
self.pynative = False
self._param_prefix = ''
self._auto_prefix = auto_prefix
@ -79,6 +80,15 @@ class Cell:
self._backward_hook = None
self.enable_hook = False
self._bprop_debug = False
self._is_run = False
@property
def is_run(self):
return self._is_run
@is_run.setter
def is_run(self, value):
self._is_run = value
@property
def create_time(self):
@ -192,9 +202,20 @@ class Cell:
out = self.compile_and_run(*inputs)
return out
self.init_parameters_data()
output = self.construct(*inputs)
if self.requires_grad is True:
_pynative_exec.set_grad_flag(True)
_pynative_exec.new_graph(self, *inputs)
else:
_pynative_exec.set_grad_flag(False)
if self.enable_hook:
output = self._hook_construct(*inputs)
else:
output = self.construct(*inputs)
if isinstance(output, Parameter):
output = output.data
if self.requires_grad is True:
_pynative_exec.end_graph(self, output, *inputs)
self._is_run = True
return output
def __setattr__(self, name, value):
@ -722,6 +743,10 @@ class Cell:
self.add_flags_recursive(**flags)
return self
def set_grad(self, mode=True):
self.add_flags_recursive(requires_grad=mode)
return self
def set_train(self, mode=True):
"""
Sets the cell to training mode.
@ -762,9 +787,9 @@ class Cell:
self.add_flags(auto_parallel=True)
self._get_construct_inputs_number_and_name()
def _hook_construct(self, inputs):
def _hook_construct(self, *inputs):
"""Hook construct method to replace original construct method when hook function enabled."""
inputs = self._backward_hook(inputs)
inputs = self._backward_hook(*inputs)
inputs = self.construct(inputs)
outputs = self._backward_hook(inputs)
return outputs

View File

@ -166,6 +166,7 @@ class TrainOneStepCell(Cell):
def __init__(self, network, optimizer, sens=1.0):
super(TrainOneStepCell, self).__init__(auto_prefix=False)
self.network = network
self.network.set_grad()
self.network.add_flags(defer_inline=True)
self.weights = optimizer.parameters
self.optimizer = optimizer

View File

@ -18,14 +18,16 @@
"""Basic composite operations."""
from functools import partial
from mindspore import context
from ..._c_expression import EnvInstance_, GradOperation_, HyperMap_, MultitypeFuncGraph_, Tail_, TensorSlice_, \
TupleAdd_, TupleSlice_, UnpackCall_, ZipOperation_, ListAppend_, TupleGetItemTensor_
from ...common import dtype as mstype
from ...common.api import ms_function
from ...common.api import ms_function, _pynative_exec
from .. import functional as F
from .. import operations as P
from ...common.parameter import Parameter
__all__ = [EnvInstance_, TensorSlice_, TupleAdd_, TupleSlice_, UnpackCall_, TupleGetItemTensor_]
@ -105,14 +107,34 @@ class GradOperation(GradOperation_):
GradOperation_.__init__(self, name, get_all, get_by_list, sens_param)
self.grad_fn = None
self.fn = None
self.need_forward = False
def __call__(self, fn, weights=None):
grad_ = GradOperation('grad', self.get_all, self.get_by_list, self.sens_param)
if self.grad_fn is None or self.fn != fn:
if self.get_by_list:
@ms_function(obj=fn)
def after_grad(*args):
return grad_(fn, weights)(*args)
if context.get_context("mode") == context.GRAPH_MODE or fn.bprop_debug:
@ms_function(obj=fn)
def after_grad(*args):
return grad_(fn, weights)(*args)
else:
def after_grad(*args):
if fn.is_run and not fn.requires_grad:
raise ValueError("obj must set_grad.")
if not fn.is_run:
self.need_forward = True
print("already has forward run before grad by user")
if self.need_forward:
fn.set_grad()
if self.sens_param:
f_args = args[:-1]
fn(*f_args)
else:
fn(*args)
_pynative_exec.grad(grad_, fn, weights, *args)
out = _pynative_exec(*args)
_pynative_exec.clear()
return out
else:
@ms_function(obj=fn)
def after_grad(*args):

View File

@ -286,12 +286,6 @@ class HookBackward(PrimitiveWithInfer):
self.register_hook(hook_fn)
self.cell_id = cell_id
def __call__(self, *inputs):
"""run in PyNative mode."""
if len(inputs) == 1:
return inputs[0]
return inputs
def infer_shape(self, *inputs_shape):
if len(inputs_shape) == 1:
return inputs_shape[0]

View File

@ -328,15 +328,9 @@ def _run_op(obj, op_name, args):
op_inputs = []
for i, arg in enumerate(args):
if hasattr(arg, '__parameter__'):
op_inputs.append(arg.default_input)
op_mask[i] = 1
elif isinstance(arg, tuple):
convert = lambda x: x.default_input if hasattr(x, '__parameter__') else x
args_ = tuple(convert(x) for x in arg)
op_inputs.append(args_)
else:
op_inputs.append(arg)
output = real_run_op(obj, op_name, tuple(op_inputs), tuple(op_mask))
op_inputs.append(arg)
output = real_run_op(obj, op_name, args, tuple(op_mask))
if not output:
raise RuntimeError("Pynative run op %s failed!" % op_name)
if len(output) == 1:

View File

@ -54,4 +54,4 @@ class Net_Dropout(nn.Cell):
def test_compile_dropout():
net = Net_Dropout()
input_data = Tensor(np.ones([20, 16, 50], dtype=np.float32))
_executor.compile(net, input_data)
net(input_data)

View File

@ -18,6 +18,7 @@ import numpy as np
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
from mindspore.ops.vm_impl_registry import vm_impl_registry as vm_impl_getters
from .vm_interface import vm
@ -225,7 +226,7 @@ def vm_impl_slice(self):
return vm_impl
@vm_impl_getters.register(P._grad_ops.ConcatOffset)
@vm_impl_getters.register(G.ConcatOffset)
def vm_impl_concatOffset(self):
"""Generate vm_impl function for ConcatOffset"""