add indexaddgrad ops support and testcases

This commit is contained in:
TFBunny 2021-02-22 12:03:12 -05:00
parent f7c86617bf
commit e1462c8684
5 changed files with 351 additions and 0 deletions

View File

@ -49,6 +49,38 @@ MS_REG_GPU_KERNEL_TWO(
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16),
GatherV2GpuFwdKernel, half, int64_t)
MS_REG_GPU_KERNEL_TWO(
Gather, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
GatherV2GpuFwdKernel, int, int)
MS_REG_GPU_KERNEL_TWO(
Gather, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
GatherV2GpuFwdKernel, int, int64_t)
MS_REG_GPU_KERNEL_TWO(
Gather, KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt16),
GatherV2GpuFwdKernel, int16_t, int)
MS_REG_GPU_KERNEL_TWO(
Gather, KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt16),
GatherV2GpuFwdKernel, int16_t, int64_t)
MS_REG_GPU_KERNEL_TWO(
Gather, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt8),
GatherV2GpuFwdKernel, int8_t, int)
MS_REG_GPU_KERNEL_TWO(
Gather, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt8),
GatherV2GpuFwdKernel, int8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(
Gather, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeUInt8),
GatherV2GpuFwdKernel, uint8_t, int)
MS_REG_GPU_KERNEL_TWO(
Gather, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeUInt8),
GatherV2GpuFwdKernel, uint8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(Gather,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)

View File

@ -59,3 +59,21 @@ template void GatherV2<double, int>(double *input, int *indices, double *output,
size_t output_dim2, size_t input_dim1, cudaStream_t stream);
template void GatherV2<double, int64_t>(double *input, int64_t *indices, double *output, size_t output_dim0,
size_t output_dim1, size_t output_dim2, size_t input_dim1, cudaStream_t stream);
template void GatherV2<int, int>(int *input, int *indices, int *output, size_t output_dim0, size_t output_dim1,
size_t output_dim2, size_t input_dim1, cudaStream_t stream);
template void GatherV2<int, int64_t>(int *input, int64_t *indices, int *output, size_t output_dim0, size_t output_dim1,
size_t output_dim2, size_t input_dim1, cudaStream_t stream);
template void GatherV2<int16_t, int>(int16_t *input, int *indices, int16_t *output, size_t output_dim0,
size_t output_dim1, size_t output_dim2, size_t input_dim1, cudaStream_t stream);
template void GatherV2<int16_t, int64_t>(int16_t *input, int64_t *indices, int16_t *output, size_t output_dim0,
size_t output_dim1, size_t output_dim2, size_t input_dim1,
cudaStream_t stream);
template void GatherV2<int8_t, int>(int8_t *input, int *indices, int8_t *output, size_t output_dim0, size_t output_dim1,
size_t output_dim2, size_t input_dim1, cudaStream_t stream);
template void GatherV2<int8_t, int64_t>(int8_t *input, int64_t *indices, int8_t *output, size_t output_dim0,
size_t output_dim1, size_t output_dim2, size_t input_dim1, cudaStream_t stream);
template void GatherV2<uint8_t, int>(uint8_t *input, int *indices, uint8_t *output, size_t output_dim0,
size_t output_dim1, size_t output_dim2, size_t input_dim1, cudaStream_t stream);
template void GatherV2<uint8_t, int64_t>(uint8_t *input, int64_t *indices, uint8_t *output, size_t output_dim0,
size_t output_dim1, size_t output_dim2, size_t input_dim1,
cudaStream_t stream);

View File

@ -1300,3 +1300,15 @@ def get_bprop_lin_space(self):
return zeros_like(start), zeros_like(stop), zeros_like(num)
return bprop
@bprop_getters.register(P.IndexAdd)
def get_bprop_index_add(self):
"""Generate bprop for IndexAdd"""
gather = P.Gather()
_axis = self.axis
def bprop(input_x, indices, input_y, out, dout):
return dout, zeros_like(indices), gather(dout, indices, _axis)
return bprop

View File

@ -1178,3 +1178,183 @@ def test_gather1_float64():
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather1_int32():
x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=np.int32).reshape(2, 3, 4, 5))
indices = Tensor(np.array([1, 3, 4], dtype='i4'))
expect = np.array([[[[1., 3., 4.],
[6., 8., 9.],
[11., 13., 14.],
[16., 18., 19.]],
[[21., 23., 24.],
[26., 28., 29.],
[31., 33., 34.],
[36., 38., 39.]],
[[41., 43., 44.],
[46., 48., 49.],
[51., 53., 54.],
[56., 58., 59.]]],
[[[61., 63., 64.],
[66., 68., 69.],
[71., 73., 74.],
[76., 78., 79.]],
[[81., 83., 84.],
[86., 88., 89.],
[91., 93., 94.],
[96., 98., 99.]],
[[101., 103., 104.],
[106., 108., 109.],
[111., 113., 114.],
[116., 118., 119.]]]]).astype(np.int32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
gather = GatherNet1()
output = gather(x, indices)
error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather1_int16():
x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=np.int16).reshape(2, 3, 4, 5))
indices = Tensor(np.array([1, 3, 4], dtype='i4'))
expect = np.array([[[[1., 3., 4.],
[6., 8., 9.],
[11., 13., 14.],
[16., 18., 19.]],
[[21., 23., 24.],
[26., 28., 29.],
[31., 33., 34.],
[36., 38., 39.]],
[[41., 43., 44.],
[46., 48., 49.],
[51., 53., 54.],
[56., 58., 59.]]],
[[[61., 63., 64.],
[66., 68., 69.],
[71., 73., 74.],
[76., 78., 79.]],
[[81., 83., 84.],
[86., 88., 89.],
[91., 93., 94.],
[96., 98., 99.]],
[[101., 103., 104.],
[106., 108., 109.],
[111., 113., 114.],
[116., 118., 119.]]]]).astype(np.int16)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
gather = GatherNet1()
output = gather(x, indices)
error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather1_int8():
x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=np.int8).reshape(2, 3, 4, 5))
indices = Tensor(np.array([1, 3, 4], dtype='i4'))
expect = np.array([[[[1., 3., 4.],
[6., 8., 9.],
[11., 13., 14.],
[16., 18., 19.]],
[[21., 23., 24.],
[26., 28., 29.],
[31., 33., 34.],
[36., 38., 39.]],
[[41., 43., 44.],
[46., 48., 49.],
[51., 53., 54.],
[56., 58., 59.]]],
[[[61., 63., 64.],
[66., 68., 69.],
[71., 73., 74.],
[76., 78., 79.]],
[[81., 83., 84.],
[86., 88., 89.],
[91., 93., 94.],
[96., 98., 99.]],
[[101., 103., 104.],
[106., 108., 109.],
[111., 113., 114.],
[116., 118., 119.]]]]).astype(np.int8)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
gather = GatherNet1()
output = gather(x, indices)
error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gather1_uint8():
x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=np.uint8).reshape(2, 3, 4, 5))
indices = Tensor(np.array([1, 3, 4], dtype='i4'))
expect = np.array([[[[1., 3., 4.],
[6., 8., 9.],
[11., 13., 14.],
[16., 18., 19.]],
[[21., 23., 24.],
[26., 28., 29.],
[31., 33., 34.],
[36., 38., 39.]],
[[41., 43., 44.],
[46., 48., 49.],
[51., 53., 54.],
[56., 58., 59.]]],
[[[61., 63., 64.],
[66., 68., 69.],
[71., 73., 74.],
[76., 78., 79.]],
[[81., 83., 84.],
[86., 88., 89.],
[91., 93., 94.],
[96., 98., 99.]],
[[101., 103., 104.],
[106., 108., 109.],
[111., 113., 114.],
[116., 118., 119.]]]]).astype(np.uint8)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
gather = GatherNet1()
output = gather(x, indices)
error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)

View File

@ -16,10 +16,12 @@
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops import composite as C
class NetIndexAdd(nn.Cell):
@ -257,3 +259,110 @@ def test_index_add_invalid_inputs():
net = NetIndexAdd(1)
_ = net(Tensor(x), Tensor(idx), Tensor(y))
assert "out of range" in str(info.value)
class IndexAddGradNet(nn.Cell):
def __init__(self, network):
super(IndexAddGradNet, self).__init__()
self.grad = C.GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, x, idx, y, dout):
out = self.grad(self.network)(x, idx, y, dout)
return out
def index_add_grad_with_type(nptype):
net = NetIndexAdd(1)
grad_net = IndexAddGradNet(net)
x = Tensor(np.arange(15).reshape(5, 3).astype(nptype))
y = Tensor(np.arange(5).reshape(5, 1).astype(nptype))
dout = Tensor(np.array([[63., 64., 65.],
[66., 67., 68.],
[69., 70., 71.],
[72., 73., 74.],
[75., 76., 77.]]).astype(nptype))
index = Tensor(np.array([1]), dtype=mindspore.int32)
xgrad, _, ygrad = grad_net(x, index, y, dout)
expect_xgrad = np.array([[63., 64., 65.],
[66., 67., 68.],
[69., 70., 71.],
[72., 73., 74.],
[75., 76., 77.]]).astype(nptype)
expect_ygrad = np.array([[64.],
[67.],
[70.],
[73.],
[76.]]).astype(nptype)
np.testing.assert_array_equal(xgrad.asnumpy(), expect_xgrad)
np.testing.assert_array_equal(ygrad.asnumpy(), expect_ygrad)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_float64():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.float64)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.float64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_float32():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_float16():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.float16)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_int32():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.int32)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_int16():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.int16)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.int16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_int8():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.int8)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.int8)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_uint8():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.uint8)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.uint8)