tensor_scatter_update new op quick initial commit

fix ci

fix ci

fix ci

fix ci
This commit is contained in:
Peilin Wang 2021-03-07 23:51:48 -05:00
parent d11a59cdf6
commit dd72f44b27
5 changed files with 462 additions and 0 deletions

View File

@ -0,0 +1,61 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/arrays/tensor_scatter_update_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_TWO(TensorScatterUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
TensorScatterUpdateGpuFwdKernel, half, int)
MS_REG_GPU_KERNEL_TWO(TensorScatterUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
TensorScatterUpdateGpuFwdKernel, float, int)
MS_REG_GPU_KERNEL_TWO(TensorScatterUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
TensorScatterUpdateGpuFwdKernel, char, int)
MS_REG_GPU_KERNEL_TWO(TensorScatterUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
TensorScatterUpdateGpuFwdKernel, int, int)
MS_REG_GPU_KERNEL_TWO(TensorScatterUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
TensorScatterUpdateGpuFwdKernel, uchar, int)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,212 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_TENSOR_SCATTER_UPDATE_GPU_KERNEL_H
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_TENSOR_SCATTER_UPDATE_GPU_KERNEL_H
#include <vector>
#include <algorithm>
#include "backend/kernel_compiler/gpu/cuda_impl/tensor_scatter_update.cuh"
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T, typename S>
class TensorScatterUpdateGpuFwdKernel : public GpuKernel {
public:
TensorScatterUpdateGpuFwdKernel()
: input_size_(1),
update_size_(1),
indices_size_(1),
output_size_(1),
block_size_(1),
indices_stride_(nullptr),
work_shape_(nullptr),
indices_dim_0_(0),
indices_dim_1_(0),
memcpy_flag_(false) {}
~TensorScatterUpdateGpuFwdKernel() {
if (indices_stride_ != nullptr) {
device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(static_cast<void *>(indices_stride_));
}
if (work_shape_ != nullptr) {
device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(static_cast<void *>(work_shape_));
}
}
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
VARIABLE_NOT_USED(workspace);
T *input = GetDeviceAddress<T>(inputs, 0);
S *indices = GetDeviceAddress<S>(inputs, 1);
T *update = GetDeviceAddress<T>(inputs, 2);
T *output = GetDeviceAddress<T>(outputs, 0);
if (!memcpy_flag_) {
const size_t indices_len = sizeof(S) * vec_indices_stride_.size();
const size_t vec_work_len = sizeof(S) * vec_work_shape_.size();
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(indices_stride_, &vec_indices_stride_[0], indices_len,
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpy failed in TensorScatterUpdateGpuFwdKernel::Launch.");
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(work_shape_, &vec_work_shape_[0], vec_work_len, cudaMemcpyHostToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpy failed in TensorScatterUpdateGpuFwdKernel::Launch.");
memcpy_flag_ = true;
}
CHECK_CUDA_RET_WITH_EXCEPT(
kernel_node_,
cudaMemsetAsync(output, static_cast<T>(0.0), output_size_, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemSet failed in TensorScatterUpdateGpuFwdKernel::Launch.");
const size_t update_size = update_size_ / sizeof(T);
const size_t output_size = output_size_ / sizeof(T);
TensorScatterUpdate(input, indices, update, output, block_size_, update_size, output_size, indices_dim_0_,
indices_dim_1_, indices_stride_, work_shape_, reinterpret_cast<cudaStream_t>(stream_ptr));
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(&output[0], &input[0], input_size_, cudaMemcpyDeviceToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync output failed");
return true;
}
bool Init(const CNodePtr &kernel_node) override {
kernel_node_ = kernel_node;
memcpy_flag_ = false;
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 3) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but TensorScatterUpdate needs 3 inputs.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but TensorScatterUpdate has 1 output.";
return false;
}
update_shapes_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
indices_shapes_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
input_shapes_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
output_shapes_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
std::vector<size_t> shape_me = input_shapes_;
(void)std::transform(shape_me.begin(), shape_me.end(), std::back_inserter(vec_work_shape_),
[](const size_t &value) { return static_cast<S>(value); });
GetSize();
const size_t indices_len = sizeof(S) * vec_indices_stride_.size();
void *indices_stride_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(indices_len);
if (indices_stride_work == nullptr) {
MS_LOG(EXCEPTION) << "Failed to alloc indices_stride_work, size: " << indices_len;
}
indices_stride_ = static_cast<S *>(indices_stride_work);
const size_t vec_work_len = sizeof(S) * vec_work_shape_.size();
void *work_shape_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(vec_work_len);
if (work_shape_work == nullptr) {
MS_LOG(EXCEPTION) << "Failed to alloc work_shape_work, size: " << vec_work_len;
}
work_shape_ = static_cast<S *>(work_shape_work);
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
input_size_list_.push_back(indices_size_);
input_size_list_.push_back(update_size_);
output_size_list_.push_back(output_size_);
return;
}
void GetSize() {
input_size_ = sizeof(T);
for (size_t i = 0; i < input_shapes_.size(); i++) {
input_size_ *= input_shapes_[i];
}
indices_size_ = sizeof(S);
for (size_t i = 0; i < indices_shapes_.size(); i++) {
indices_size_ *= indices_shapes_[i];
}
update_size_ = sizeof(T);
for (size_t i = 0; i < update_shapes_.size(); i++) {
update_size_ *= update_shapes_[i];
}
output_size_ = sizeof(T);
for (size_t i = 0; i < output_shapes_.size(); i++) {
output_size_ *= output_shapes_[i];
}
// calculate indices dim 0/1
indices_dim_0_ = indices_shapes_[0];
indices_dim_1_ = indices_shapes_[indices_shapes_.size() - 1];
// calculate block_size
for (size_t i = indices_dim_1_; i < output_shapes_.size(); i++) {
block_size_ *= output_shapes_[i];
}
// calculate indices_stride
vec_indices_stride_.resize(indices_dim_1_, 0);
vec_indices_stride_[indices_dim_1_ - 1] = block_size_;
for (size_t i = indices_dim_1_ - 1; i > 0; --i) {
vec_indices_stride_[i - 1] = vec_indices_stride_[i] * output_shapes_[i];
}
}
private:
std::vector<size_t> update_shapes_;
std::vector<size_t> indices_shapes_;
std::vector<size_t> input_shapes_;
std::vector<size_t> output_shapes_;
std::vector<S> vec_indices_stride_;
std::vector<S> vec_work_shape_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
size_t input_size_;
size_t update_size_;
size_t indices_size_;
size_t output_size_;
size_t block_size_;
S *indices_stride_;
S *work_shape_;
size_t indices_dim_0_;
size_t indices_dim_1_;
bool memcpy_flag_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_TENSOR_SCATTER_UPDATE_GPU_KERNEL_H

View File

@ -0,0 +1,84 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/cuda_impl/tensor_scatter_update.cuh"
#include "backend/kernel_compiler/gpu/cuda_impl/util.cuh"
#include "runtime/device/gpu/cuda_common.h"
template <typename T, typename S>
__global__ void TensorScatterUpdateKernel(T *input, S *indices, T *update, T *output, const size_t block_size,
const size_t input_size, const size_t output_size, const size_t indices_dim_0,
const size_t indices_dim_1, S *indices_stride, S *work_shape) {
int i, j;
for (size_t read_index = blockIdx.x * blockDim.x + threadIdx.x; read_index < input_size;
read_index += blockDim.x * gridDim.x) {
size_t write_index = 0;
bool out_bound = false;
i = read_index / block_size;
j = read_index % block_size;
for (size_t k = 0; k < indices_dim_1; k++) {
S indices_i = indices[i * indices_dim_1 + k];
out_bound |= indices_i >= work_shape[k];
write_index += indices_i * indices_stride[k];
}
write_index += j;
out_bound |= write_index >= output_size;
if (!out_bound) {
input[write_index] = update[read_index];
}
}
}
template <typename T, typename S>
void TensorScatterUpdate(T *input, S *indices, T *update, T *output, const size_t &block_size, const size_t &input_size,
const size_t &output_size, const size_t &indices_dim_0, const size_t &indices_dim_1, S *indices_stride,
S *work_shape, cudaStream_t stream) {
TensorScatterUpdateKernel<<<GET_BLOCKS(output_size), GET_THREADS, 0, stream>>>(input, indices, update, output,
block_size, input_size, output_size,
indices_dim_0, indices_dim_1,
indices_stride, work_shape);
return;
}
template void TensorScatterUpdate<half, int>(half *input, int *indices, half *update, half *output,
const size_t &block_size, const size_t &input_size,
const size_t &output_size, const size_t &indices_dim_0,
const size_t &indices_dim_1, int *indices_stride, int *work_shape,
cudaStream_t stream);
template void TensorScatterUpdate<float, int>(float *input, int *indices, float *update, float *output,
const size_t &block_size, const size_t &input_size,
const size_t &output_size, const size_t &indices_dim_0,
const size_t &indices_dim_1, int *indices_stride, int *work_shape,
cudaStream_t stream);
template void TensorScatterUpdate<char, int>(char *input, int *indices, char *update, char *output,
const size_t &block_size, const size_t &input_size,
const size_t &output_size, const size_t &indices_dim_0,
const size_t &indices_dim_1, int *indices_stride, int *work_shape,
cudaStream_t stream);
template void TensorScatterUpdate<int, int>(int *input, int *indices, int *update, int *output,
const size_t &block_size, const size_t &input_size,
const size_t &output_size, const size_t &indices_dim_0,
const size_t &indices_dim_1, int *indices_stride, int *work_shape,
cudaStream_t stream);
template void TensorScatterUpdate<unsigned char, int>(unsigned char *input, int *indices, unsigned char *update,
unsigned char *output, const size_t &block_size,
const size_t &input_size, const size_t &output_size,
const size_t &indices_dim_0, const size_t &indices_dim_1,
int *indices_stride, int *work_shape, cudaStream_t stream);

View File

@ -0,0 +1,26 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_TENSOR_SCATTER_UPDATE_IMPL_CUH
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_TENSOR_SCATTER_UPDATE_IMPL_CUH
#include "runtime/device/gpu/cuda_common.h"
template <typename T, typename S>
void TensorScatterUpdate(T *input, S *indices, T *update, T *output, const size_t &block_size, const size_t &input_size,
const size_t &output_size, const size_t &indices_dim_0, const size_t &indices_dim_1, S *indices_stride,
S *work_shape, cudaStream_t stream);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_TENSOR_SCATTER_UPDATE_IMPL_CUH

View File

@ -0,0 +1,79 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.scatter = P.TensorScatterUpdate()
def construct(self, x, indices, update):
return self.scatter(x, indices, update)
def scatter_net(x, indices, update):
scatter = Net()
return scatter(Tensor(x), Tensor(indices), Tensor(update)).asnumpy()
def test_scatter():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
arr_input = np.arange(21).reshape(3, 7).astype(np.float32)
arr_indices = np.array([[0, 1], [1, 1], [0, 5], [0, 2], [2, 1]]).astype(np.int32)
arr_update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(np.float32)
out = scatter_net(arr_input, arr_indices, arr_update)
expected = np.array([[0, 3.2, -2.2, 3, 4, 5.3, 6],
[7, 1.1, 9, 10, 11, 12, 13],
[14, -1, 16, 17, 18, 19, 20]]).astype(np.float32)
np.testing.assert_allclose(out, expected, rtol=1e-6)
arr_input = np.arange(24).reshape(4, 2, 3).astype(np.float32)
arr_indices = np.array([[0, 0, 0], [1, 1, 1], [0, 1, 1], [3, 0, 1]]).astype(np.int32)
arr_update = np.array([-1, -2, -3, -4]).astype(np.float32)
out = scatter_net(arr_input, arr_indices, arr_update)
expected = np.array([[[-1, 1, 2],
[3, -3, 5]],
[[6, 7, 8],
[9, -2, 11]],
[[12, 13, 14],
[15, 16, 17]],
[[18, -4, 20],
[21, 22, 23]]]).astype(np.float32)
np.testing.assert_allclose(out, expected, rtol=1e-6)
arr_input = np.arange(25).reshape(5, 5).astype(np.float32)
arr_indices = np.array([[[0, 0],
[1, 1],
[2, 2],
[3, 3],
[4, 4]],
[[0, 4],
[1, 3],
[2, 2],
[3, 1],
[4, 0]]]).astype(np.int32)
arr_update = np.array([[11, 22, 33, 44, 55], [66, 77, 33, 99, 100]]).astype(np.float32)
out = scatter_net(arr_input, arr_indices, arr_update)
expected = np.array([[11, 1, 2, 3, 66],
[5, 22, 7, 77, 9],
[10, 11, 33, 13, 14],
[15, 99, 17, 44, 19],
[100, 21, 22, 23, 55]]).astype(np.float32)
np.testing.assert_allclose(out, expected, rtol=1e-6)