cpu_pad_op

This commit is contained in:
wanyiming 2021-02-05 19:13:09 +08:00
parent 66e5e1cfc3
commit dbc0ad13db
9 changed files with 1270 additions and 0 deletions

View File

@ -0,0 +1,192 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/mirror_pad_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void MirrorPadCPUKernel::InitKernel(const CNodePtr &kernel_node) {
std::string mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, "mode");
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
if (mode == "REFLECT") {
mode_ = 0;
} else if (mode == "SYMMETRIC") {
mode_ = 1;
} else {
MS_LOG(EXCEPTION) << "For mirror pad, only REFLECT and SYMMETRIC are supported.";
}
std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
shape_size_ = input_shape.size();
if (shape_size_ == 4) { // shape adjustment from 2d/3d to 4d
} else if (shape_size_ == 3) {
auto it = input_shape.begin();
input_shape.insert(it, 1); // batch padding
shape_size_ = 4;
} else if (shape_size_ == 2) {
auto it = input_shape.begin();
input_shape.insert(it, 2, 1); // channel padding
shape_size_ = 4;
}
for (size_t i = 0; i < shape_size_; ++i) {
tensor_size_ *= input_shape[i];
input_shape_.push_back(input_shape[i]);
}
std::vector<size_t> padding_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
num_paddings_ = padding_shape[0];
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
for (auto x : output_shape) {
output_size_ *= x;
output_shape_.push_back(x);
}
size_t max_width = input_shape_[3];
size_t max_height = input_shape_[2];
if (mode_ == 1) { // symmetric
max_width = max_width + (2 * max_width);
max_height = max_height + (2 * max_height);
} else { // reflect
max_width = max_width + (2 * (max_width - 1));
max_height = max_height + (2 * (max_height - 1));
}
if (output_shape_[(output_shape_.size() - 2) + 0] > max_height ||
output_shape_[(output_shape_.size() - 2) + 1] > max_width) {
MS_LOG(ERROR) << "ERROR: Padding value too high for input Tensor on 1 or more dims";
}
}
void extract_paddings(const int64_t *paddings_arg, int padd_dim, int64_t *extracted_paddings) {
const int paddings_offset = MAX_PADDINGS - padd_dim;
for (int i = 0; i < padd_dim; i++) {
extracted_paddings[(paddings_offset + i) * PADDING_SIZE] = paddings_arg[i * PADDING_SIZE];
extracted_paddings[(paddings_offset + i) * PADDING_SIZE + 1] = paddings_arg[i * PADDING_SIZE + 1];
}
}
bool MirrorPadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
LaunchKernel<float>(inputs, outputs);
} else if (dtype_ == kNumberTypeInt32) {
LaunchKernel<int>(inputs, outputs);
} else {
MS_LOG(EXCEPTION) << "Data type is " << TypeIdLabel(dtype_) << "is not support.";
}
return true;
}
template <typename T>
void MirrorPadCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto inputs_addr = reinterpret_cast<T *>(inputs[0]->addr);
int64_t *paddings_arg = reinterpret_cast<int64_t *>(inputs[1]->addr);
auto outputs_addr = reinterpret_cast<T *>(outputs[0]->addr);
const int old_batch = input_shape_[0];
const int old_channel = input_shape_[1];
const int old_height = input_shape_[2];
const int old_width = input_shape_[3];
int dim_offset = output_shape_.size() - 2;
const int padded_height = output_shape_[dim_offset + 0];
const int padded_width = output_shape_[dim_offset + 1];
const int padd_dim = num_paddings_;
const int mode = mode_;
int64_t paddings[MAX_PADDINGS * PADDING_SIZE]; // local and fixed size to keep in registers
for (int i = 0; i < MAX_PADDINGS * PADDING_SIZE; i++) {
paddings[i] = 0;
}
extract_paddings(paddings_arg, padd_dim, paddings);
// Create anchor points for non mirrored data inside new tensor
int ap1_x = paddings[WIDTH + LEFT];
int ap2_x = paddings[WIDTH + LEFT] + old_width - 1;
int ap1_y = paddings[HEIGHT + TOP];
int ap2_y = paddings[HEIGHT + TOP] + old_height - 1;
int ap1_channel = paddings[CHANNEL + LEFT];
int ap2_channel = paddings[CHANNEL + LEFT] + old_channel - 1;
int ap1_batch = paddings[BATCH + LEFT];
int ap2_batch = paddings[BATCH + LEFT] + old_batch - 1;
int channels_new = old_channel + paddings[CHANNEL + LEFT] + paddings[CHANNEL + RIGHT];
for (size_t pos = 0; pos < output_size_; ++pos) {
int block_num = (pos / padded_width) / padded_height;
// cur position
const int padded_x = pos % padded_width;
const int padded_y = (pos / padded_width) % padded_height;
const int padded_channel = block_num % channels_new;
const int padded_batch = block_num / channels_new;
// data to mirror from in new tensor dims
int matchval_x_index = padded_x;
int matchval_y_index = padded_y;
int matchval_channel_index = padded_channel;
int matchval_batch_index = padded_batch;
int equiv_block_num = 0;
// update matching index in original tensor across all 4 dims
if ((padded_x < ap1_x) || (padded_x > ap2_x)) {
int x_dist = (padded_x < ap1_x) ? (ap1_x - padded_x) : (padded_x - ap2_x);
matchval_x_index = (padded_x < ap1_x) ? (ap1_x + x_dist - mode) : (ap2_x - x_dist + mode);
}
if ((padded_y < ap1_y) || (padded_y > ap2_y)) {
int y_dist = (padded_y < ap1_y) ? (ap1_y - padded_y) : (padded_y - ap2_y);
matchval_y_index = (padded_y < ap1_y) ? (ap1_y + y_dist - mode) : (ap2_y - y_dist + mode);
}
if ((padded_channel < ap1_channel) || (padded_channel > ap2_channel)) {
int channel_dist =
(padded_channel < ap1_channel) ? (ap1_channel - padded_channel) : (padded_channel - ap2_channel);
matchval_channel_index =
(padded_channel < ap1_channel) ? (ap1_channel + channel_dist - mode) : (ap2_channel - channel_dist + mode);
}
if ((padded_batch < ap1_batch) || (padded_batch > ap2_batch)) {
int batch_dist = (padded_batch < ap1_batch) ? (ap1_batch - padded_batch) : (padded_batch - ap2_batch);
matchval_batch_index =
(padded_batch < ap1_batch) ? (ap1_batch + batch_dist - mode) : (ap2_batch - batch_dist + mode);
}
// calculate equivalent block in input
equiv_block_num = ((matchval_batch_index - paddings[BATCH + LEFT]) * old_channel) +
(matchval_channel_index - paddings[CHANNEL + LEFT]);
// copy data from equiv block and adjusted x and y values in unpadded tensor
outputs_addr[pos] =
inputs_addr[(equiv_block_num * old_height + matchval_y_index - paddings[HEIGHT + TOP]) * old_width +
matchval_x_index - paddings[WIDTH + LEFT]];
}
}
void MirrorPadCPUKernel::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but MirrorPadCPUKernel needs 2 inputs.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but MirrorPadCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,82 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include <string>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
// preset size of paddings
#define MAX_PADDINGS 4
#define PADDING_SIZE 2
// define constants for kernel indexing use
#define BATCH 0 * PADDING_SIZE
#define CHANNEL 1 * PADDING_SIZE
#define HEIGHT 2 * PADDING_SIZE
#define WIDTH 3 * PADDING_SIZE
#define TOP 0
#define BOTTOM 1
#define LEFT 0
#define RIGHT 1
namespace mindspore {
namespace kernel {
class MirrorPadCPUKernel : public CPUKernel {
public:
MirrorPadCPUKernel() = default;
~MirrorPadCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
TypeId dtype_{kTypeUnknown};
uint64_t tensor_size_ = 1;
size_t shape_size_;
uint64_t output_size_ = 1;
std::vector<size_t> input_shape_;
std::vector<size_t> output_shape_;
int mode_;
int num_paddings_;
};
MS_REG_CPU_KERNEL(
MirrorPad,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16),
MirrorPadCPUKernel);
MS_REG_CPU_KERNEL(
MirrorPad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32),
MirrorPadCPUKernel);
MS_REG_CPU_KERNEL(
MirrorPad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
MirrorPadCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_CPU_KERNEL_H_

View File

@ -0,0 +1,288 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/mirror_pad_grad_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void MirrorPadGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
std::string mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, "mode");
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
if (mode == "REFLECT") {
mode_ = 0;
} else if (mode == "SYMMETRIC") {
mode_ = 1;
} else {
MS_LOG(EXCEPTION) << "For mirror pad, only REFLECT and SYMMETRIC are supported.";
}
std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
shape_size_ = input_shape.size();
if (shape_size_ == 4) { // shape adjustment from 2d/3d to 4d
} else if (shape_size_ == 3) {
auto it = input_shape.begin();
input_shape.insert(it, 1); // batch padding
shape_size_ = 4;
} else if (shape_size_ == 2) {
auto it = input_shape.begin();
input_shape.insert(it, 2, 1); // channel padding
shape_size_ = 4;
}
for (size_t i = 0; i < shape_size_; ++i) {
tensor_size_ *= input_shape[i];
input_shape_.push_back(input_shape[i]);
}
std::vector<size_t> padding_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
num_paddings_ = padding_shape[0];
std::vector<size_t> output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
if (output_shape.size() == 4) {
} else if (output_shape.size() == 3) {
auto it = output_shape.begin();
output_shape.insert(it, 1); // batch padding
} else if (output_shape.size() == 2) {
auto it = output_shape.begin();
output_shape.insert(it, 2, 1); // channel padding
}
for (auto x : output_shape) {
output_size_ *= x;
output_shape_.push_back(x);
}
for (int i = 0; i < 2; i++) {
workspace_size_ *= output_shape[i];
workspace_size_ *= input_shape[i + 2];
}
size_t max_width = input_shape_[3];
size_t max_height = input_shape_[2];
// basic error check for padding value
if (mode_ == 1) { // symmetric
max_width = max_width + (2 * max_width);
max_height = max_height + (2 * max_height);
} else { // reflect
max_width = max_width + (2 * (max_width - 1));
max_height = max_height + (2 * (max_height - 1));
}
if (output_shape_[(output_shape_.size() - 2) + 0] > max_height ||
output_shape_[(output_shape_.size() - 2) + 1] > max_width) {
MS_LOG(ERROR) << "ERROR: Padding value too high for input Tensor on 1 or more DIMS";
}
}
void extract_paddings_(const int64_t *paddings_arg, int padd_dim, int64_t *extracted_paddings) {
const int paddings_offset = MAX_PADDINGS - padd_dim;
for (int i = 0; i < padd_dim; i++) {
extracted_paddings[(paddings_offset + i) * PADDING_SIZE] = paddings_arg[i * PADDING_SIZE];
extracted_paddings[(paddings_offset + i) * PADDING_SIZE + 1] = paddings_arg[i * PADDING_SIZE + 1];
}
}
bool range_check(int x, int y, int padded_width, int padded_height) {
if (((x >= 0) && (x <= padded_width - 1)) && ((y >= 0) && (y <= padded_height - 1))) {
return true;
}
return false;
}
bool MirrorPadGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &workspace,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, workspace, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
LaunchKernel<float>(inputs, workspace, outputs);
} else if (dtype_ == kNumberTypeInt32) {
LaunchKernel<int>(inputs, workspace, outputs);
} else {
MS_LOG(EXCEPTION) << "Data type is " << TypeIdLabel(dtype_) << "is not support.";
}
return true;
}
template <typename T>
void MirrorPadGradCPUKernel::InitWorkspaceSize() {
workspace_size_list_.emplace_back(workspace_size_ * sizeof(T));
}
void MirrorPadGradCPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) {
CPUKernel::InitInputOutputSize(kernel_node);
if (dtype_ == kNumberTypeFloat16) {
InitWorkspaceSize<float16>();
} else if (dtype_ == kNumberTypeFloat32) {
InitWorkspaceSize<float>();
} else if (dtype_ == kNumberTypeInt32) {
InitWorkspaceSize<int>();
}
}
template <typename T>
void MirrorPadGradCPUKernel::MirrorPadGrad_Width_Height(const size_t size, const T *dy, T *interim_dy,
const int dx_batches, const int dx_channels,
const int dx_height, const int dx_width, const int dy_height,
const int dy_width, const int padd_dim,
const int64_t *paddings_arg, int mode, T *dx) {
int64_t paddings[MAX_PADDINGS * PADDING_SIZE]; // local and fixed size to keep in registers
for (int i = 0; i < MAX_PADDINGS * PADDING_SIZE; i++) {
paddings[i] = 0; // init all to 0
}
extract_paddings_(paddings_arg, padd_dim, paddings);
// Create required anchor points for non-mirrored data inside new tensor
int ap1_x = paddings[WIDTH + LEFT];
int ap2_x = paddings[WIDTH + LEFT] + dx_width - 1;
int ap1_y = paddings[HEIGHT + TOP];
int ap2_y = paddings[HEIGHT + TOP] + dx_height - 1;
for (size_t pos = 0; pos < size; ++pos) {
int dx_block_num = (pos / dx_width) / dx_height;
const int grad_x = (pos % dx_width) + paddings[WIDTH + LEFT];
const int grad_y = ((pos / dx_width) % dx_height) + paddings[HEIGHT + TOP];
// copy position's own value into output
dx[pos] = interim_dy[(dx_block_num * dy_height + grad_y) * dy_width + grad_x];
int x_dist_1 = (ap1_x - grad_x - mode);
int y_dist_1 = (ap1_y - grad_y - mode);
int x_dist_2 = (ap2_x - grad_x + mode);
int y_dist_2 = (ap2_y - grad_y + mode);
int axis_dist[] = {x_dist_1, x_dist_2, y_dist_1, y_dist_2};
int anch_point[] = {ap1_x, ap2_x, ap1_y, ap2_y};
bool x_axis_check[] = {true, true, false, false}; // true - update X , false - update Y
int temp_x = 0;
int temp_y = 0;
// mirroring in axis lines
for (int x = 0; x < 4; x++) {
if (axis_dist[x] != 0) {
if (x_axis_check[x]) {
temp_y = grad_y;
temp_x = anch_point[x] + axis_dist[x];
} else {
temp_x = grad_x;
temp_y = anch_point[x] + axis_dist[x];
}
if (range_check(temp_x, temp_y, dy_width, dy_height)) {
dx[pos] = dx[pos] + interim_dy[(dx_block_num * dy_height + temp_y) * dy_width + temp_x];
}
}
}
// mirroring at corners
for (int x = 0; x < 2; x++) {
for (int y = 2; y < 4; y++) {
if ((axis_dist[x] != 0) && (axis_dist[y] != 0)) {
temp_x = anch_point[x] + axis_dist[x];
temp_y = anch_point[y] + axis_dist[y];
if (range_check(temp_x, temp_y, dy_width, dy_height)) {
dx[pos] = dx[pos] + interim_dy[(dx_block_num * dy_height + temp_y) * dy_width + temp_x];
}
}
}
}
}
return;
}
template <typename T>
void MirrorPadGradCPUKernel::MirrorPadGradBatchChannel(const size_t size, T *dy, T *interim_dy, const int dx_batches,
const int dx_channels, const int dx_height, const int dx_width,
const int dy_height, const int dy_width, const int padd_dim,
const int64_t *paddings_arg, int mode, T *dx) {
int64_t paddings[MAX_PADDINGS * PADDING_SIZE]; // local and fixed size to keep in registers
for (int i = 0; i < MAX_PADDINGS * PADDING_SIZE; i++) {
paddings[i] = 0; // init all to 0
}
extract_paddings_(paddings_arg, padd_dim, paddings);
// Create anchor points for non mirrored data inside new tensor
int ap1_channel = paddings[CHANNEL + LEFT];
int ap2_channel = paddings[CHANNEL + LEFT] + dx_channels - 1;
int ap1_batch = paddings[BATCH + LEFT];
int ap2_batch = paddings[BATCH + LEFT] + dx_batches - 1;
int dy_channels = dx_channels + paddings[CHANNEL + LEFT] + paddings[CHANNEL + RIGHT];
int dy_batches = dx_batches + paddings[BATCH + LEFT] + paddings[BATCH + RIGHT];
for (size_t pos = 0; pos < size; ++pos) {
int block_num = (pos / dy_width) / dy_height;
// Select exact position inside the dy_interim array
const int interim_x = pos % dy_width;
const int interim_y = (pos / dy_width) % dy_height;
const int interim_channel = block_num % dx_channels;
const int interim_batch = block_num / dx_channels;
interim_dy[pos] = T(0); // init
// map cur interim channel and batch to equivalent in padded dy array
const int equiv_dy_channel = interim_channel + paddings[CHANNEL + LEFT];
const int equiv_dy_batch = interim_batch + paddings[BATCH + LEFT];
int target_batch = 0;
int target_channel = 0;
int equiv_block_num = 0;
equiv_block_num = ((equiv_dy_batch * dy_channels) + equiv_dy_channel);
// generate values to sweep over all possible mirrored points
auto batch_offsets = {2 * (ap1_batch - equiv_dy_batch) - mode, 0, 2 * (ap2_batch - equiv_dy_batch) + mode};
auto channel_offsets = {2 * (ap1_channel - equiv_dy_channel) - mode, 0,
2 * (ap2_channel - equiv_dy_channel) + mode};
for (auto b_adjust : batch_offsets) {
for (auto c_adjust : channel_offsets) {
target_batch = equiv_dy_batch + b_adjust;
target_channel = equiv_dy_channel + c_adjust;
// bounds check - if within bounds, mirrored value exists - copy dy
if ((target_batch < 0) || (target_batch > (dy_batches - 1)) || (target_channel < 0) ||
(target_channel > (dy_channels - 1))) {
continue; // no mirrored value with these target values
}
equiv_block_num = ((target_batch * dy_channels) + target_channel);
// Copy data and set value at input to 0 to avoid duplicates in reflect mode
interim_dy[pos] = T(interim_dy[pos] + dy[(equiv_block_num * dy_height + interim_y) * dy_width + interim_x]);
dy[(equiv_block_num * dy_height + interim_y) * dy_width + interim_x] = T(0);
}
}
}
return;
}
template <typename T>
void MirrorPadGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) {
auto inputs_addr = reinterpret_cast<T *>(inputs[0]->addr);
int64_t *paddings = reinterpret_cast<int64_t *>(inputs[1]->addr);
auto interim = reinterpret_cast<T *>(workspace[0]->addr);
auto outputs_addr = reinterpret_cast<T *>(outputs[0]->addr);
MirrorPadGradBatchChannel(workspace_size_, inputs_addr, interim, output_shape_[0], output_shape_[1], output_shape_[2],
output_shape_[3], input_shape_[2], input_shape_[3], num_paddings_, paddings, mode_,
outputs_addr);
MirrorPadGrad_Width_Height(output_size_, inputs_addr, interim, output_shape_[0], output_shape_[1], output_shape_[2],
output_shape_[3], input_shape_[2], input_shape_[3], num_paddings_, paddings, mode_,
outputs_addr);
}
void MirrorPadGradCPUKernel::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but MirrorPadGradCPUKernel needs 2 inputs.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but MirrorPadGradCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,100 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_GRAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_GRAD_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include <string>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
// preset size of paddings
#define MAX_PADDINGS 4
#define PADDING_SIZE 2
// define constants for kernel indexing use
#define BATCH 0 * PADDING_SIZE
#define CHANNEL 1 * PADDING_SIZE
#define HEIGHT 2 * PADDING_SIZE
#define WIDTH 3 * PADDING_SIZE
#define TOP 0
#define BOTTOM 1
#define LEFT 0
#define RIGHT 1
namespace mindspore {
namespace kernel {
class MirrorPadGradCPUKernel : public CPUKernel {
public:
MirrorPadGradCPUKernel() = default;
~MirrorPadGradCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
void InitInputOutputSize(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void InitWorkspaceSize();
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs);
template <typename T>
void MirrorPadGrad_Width_Height(const size_t size, const T *dy, T *interim_dy, const int dx_batches,
const int dx_channels, const int dx_height, const int dx_width, const int dy_height,
const int dy_width, const int padd_dim, const int64_t *paddings_arg, int mode, T *dx);
template <typename T>
void MirrorPadGradBatchChannel(const size_t size, T *dy, T *interim_dy, const int dx_batches, const int dx_channels,
const int dx_height, const int dx_width, const int dy_height, const int dy_width,
const int padd_dim, const int64_t *paddings_arg, int mode, T *dx);
private:
void CheckParam(const CNodePtr &kernel_node);
TypeId dtype_{kTypeUnknown};
size_t tensor_size_ = 1;
size_t shape_size_;
size_t output_size_ = 1;
size_t workspace_size_ = 1;
std::vector<size_t> input_shape_;
std::vector<size_t> output_shape_;
int mode_;
int num_paddings_;
};
MS_REG_CPU_KERNEL(
MirrorPadGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16),
MirrorPadGradCPUKernel);
MS_REG_CPU_KERNEL(
MirrorPadGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32),
MirrorPadGradCPUKernel);
MS_REG_CPU_KERNEL(
MirrorPadGrad,
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
MirrorPadGradCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_CPU_KERNEL_H_

View File

@ -0,0 +1,127 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/pad_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void PadCPUKernel::InitKernel(const CNodePtr &kernel_node) {
paddings_ = AnfAlgo::GetNodeAttr<std::vector<std::vector<int64_t>>>(kernel_node, "paddings");
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
shape_size_ = input_shape.size();
if (shape_size_ == 4) { // shape adjustment from 2d/3d to 4d
} else if (shape_size_ == 3) {
auto it = input_shape.begin();
input_shape.insert(it, 1); // batch padding
shape_size_ = 4;
} else if (shape_size_ == 2) {
auto it = input_shape.begin();
input_shape.insert(it, 2, 1); // channel padding
shape_size_ = 4;
}
for (size_t i = 0; i < shape_size_; ++i) {
tensor_size_ *= input_shape[i];
input_shape_.push_back(input_shape[i]);
}
if (paddings_.size() == 4) { // shape adjustment from 2d/3d to 4d
} else if (paddings_.size() == 3) {
auto it = paddings_.begin();
paddings_.insert(it, 1, {0, 0}); // batch padding
} else if (paddings_.size() == 2) {
auto it = paddings_.begin();
paddings_.insert(it, 2, {0, 0}); // channel padding
}
for (size_t i = 0; i < shape_size_; i++) {
size_t temp = input_shape[i] + (paddings_[i][0] + paddings_[i][1]); // compute new dim size
output_size_ *= temp;
output_shape_.push_back(temp); // correct new dimension size
}
}
bool PadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
LaunchKernel<float>(inputs, outputs);
} else if (dtype_ == kNumberTypeInt32) {
LaunchKernel<int>(inputs, outputs);
} else {
MS_LOG(EXCEPTION) << "Data type is " << TypeIdLabel(dtype_) << "is not support.";
}
return true;
}
template <typename T>
void PadCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto inputs_addr = reinterpret_cast<T *>(inputs[0]->addr);
auto outputs_addr = reinterpret_cast<T *>(outputs[0]->addr);
const int pad_left = paddings_[3][0];
const int pad_top = paddings_[2][0];
const int pad_channel_before = paddings_[1][0];
const int pad_channel_after = paddings_[1][1];
const T pad_value = T(0);
// const int num = input_shape_[0];
const int channels_orig = input_shape_[1];
const int old_height = input_shape_[2];
const int old_width = input_shape_[3];
const int padded_height = output_shape_[2];
const int padded_width = output_shape_[3];
for (size_t pos = 0; pos < output_size_; ++pos) {
int block_num = (pos / padded_width) / padded_height;
const int padded_w = pos % padded_width; // x coordinate referred to by cur 'pos'
const int padded_h = (pos / padded_width) % padded_height; // y coordinate referred to by cur 'pos'
int channels_new = channels_orig + pad_channel_after + pad_channel_before; // new number of channels from padding
int channel_num = block_num % channels_new; // current channel
int batch_item = block_num / channels_new; // current item in batch
if (padded_h - pad_top < 0 || padded_w - pad_left < 0 || padded_h - pad_top >= old_height ||
padded_w - pad_left >= old_width || channel_num <= pad_channel_before - 1 ||
channel_num > channels_orig + pad_channel_before - 1) {
outputs_addr[pos] = pad_value;
} else {
// on a block/x,y position that isn't padding, copy data from the correct block/x,y pos the input
// calculate from number of blocks of padding (due to channel padding) inserted prior
int equiv_block_num = block_num - (batch_item * (pad_channel_before + pad_channel_after)) - pad_channel_before;
outputs_addr[pos] =
inputs_addr[(equiv_block_num * old_height + padded_h - pad_top) * old_width + padded_w - pad_left];
}
}
}
void PadCPUKernel::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but PadCPUKernel needs 1 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but PadCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,58 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_PAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_PAD_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class PadCPUKernel : public CPUKernel {
public:
PadCPUKernel() = default;
~PadCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<std::vector<int64_t>> paddings_;
TypeId dtype_{kTypeUnknown};
uint64_t tensor_size_ = 1;
size_t shape_size_ = 1;
uint64_t output_size_ = 1;
std::vector<size_t> input_shape_;
std::vector<size_t> output_shape_;
};
MS_REG_CPU_KERNEL(Pad, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), PadCPUKernel);
MS_REG_CPU_KERNEL(Pad, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), PadCPUKernel);
MS_REG_CPU_KERNEL(Pad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), PadCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_PAD_CPU_KERNEL_H_

View File

@ -53,8 +53,11 @@ class SliceCPUKernel : public CPUKernel {
MS_REG_CPU_KERNEL(Slice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
SliceCPUKernel);
MS_REG_CPU_KERNEL(Slice, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), SliceCPUKernel);
MS_REG_CPU_KERNEL(StridedSlice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
SliceCPUKernel);
MS_REG_CPU_KERNEL(StridedSlice, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
SliceCPUKernel);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,169 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops.composite import GradOperation
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_mirror_pad():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test1_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]]
test_1_paddings = ((0, 0), (0, 0), (1, 1), (2, 2))
test1_arr_exp = [[[[6, 5, 4, 5, 6, 5, 4], [3, 2, 1, 2, 3, 2, 1], [6, 5, 4, 5, 6, 5, 4],
[9, 8, 7, 8, 9, 8, 7], [6, 5, 4, 5, 6, 5, 4]]]]
test2_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]]
test_2_paddings = ((0, 0), (0, 0), (1, 1), (2, 2))
test2_arr_exp = [[[[2, 1, 1, 2, 3, 3, 2], [2, 1, 1, 2, 3, 3, 2], [5, 4, 4, 5, 6, 6, 5],
[8, 7, 7, 8, 9, 9, 8], [8, 7, 7, 8, 9, 9, 8]]]]
reflectOp = nn.Pad(mode='REFLECT', paddings=test_1_paddings)
symmOp = nn.Pad(mode='SYMMETRIC', paddings=test_2_paddings)
x_test_1 = Tensor(np.array(test1_arr_in), dtype=mindspore.float32)
x_test_2 = Tensor(np.array(test2_arr_in), dtype=mindspore.float32)
y_test_1 = reflectOp(x_test_1).asnumpy()
y_test_2 = symmOp(x_test_2).asnumpy()
print(np.array(test1_arr_in))
print(y_test_1)
np.testing.assert_equal(np.array(test1_arr_exp), y_test_1)
np.testing.assert_equal(np.array(test2_arr_exp), y_test_2)
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):
def __init__(self, pads, mode_):
super(Net, self).__init__()
self.pad = nn.Pad(mode=mode_, paddings=pads)
def construct(self, x):
return self.pad(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_mirror_pad_backprop():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] # size -> 3*3
test_arr_in = Tensor(test_arr_in, dtype=mindspore.float32)
dy = (np.ones((1, 1, 4, 5)) * 0.1).astype(np.float32)
expected_dx = np.array([[[[0.2, 0.2, 0.1],
[0.4, 0.4, 0.2],
[0.2, 0.2, 0.1]]]])
net = Grad(Net(((0, 0), (0, 0), (1, 0), (0, 2)), "REFLECT"))
dx = net(test_arr_in, Tensor(dy))
dx = dx[0].asnumpy()
np.testing.assert_array_almost_equal(dx, expected_dx)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mirror_pad_fwd_back_4d_int32_reflect():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# set constants
shape = (2, 3, 3, 5)
pads = ((1, 0), (2, 0), (1, 2), (3, 4))
total_val = np.prod(shape)
test_arr_np = np.arange(total_val).reshape(shape) + 1
test_arr_ms = Tensor(test_arr_np, dtype=mindspore.int32)
# fwd_pass_check
op = nn.Pad(mode="REFLECT", paddings=pads)
expected_np_result = np.pad(test_arr_np, pads, 'reflect')
obtained_ms_res = op(test_arr_ms).asnumpy()
np.testing.assert_array_equal(expected_np_result, obtained_ms_res)
# backwards pass check
GradNet = Grad(Net(pads, "REFLECT"))
dy_value = Tensor(np.ones(obtained_ms_res.shape), dtype=mindspore.int32)
dx_value_obtained = GradNet(test_arr_ms, dy_value)[0].asnumpy()
dx_value_expected = np.array([[[[4, 6, 6, 6, 2],
[6, 9, 9, 9, 3],
[2, 3, 3, 3, 1]],
[[8, 12, 12, 12, 4],
[12, 18, 18, 18, 6],
[4, 6, 6, 6, 2]],
[[8, 12, 12, 12, 4],
[12, 18, 18, 18, 6],
[4, 6, 6, 6, 2]]],
[[[8, 12, 12, 12, 4],
[12, 18, 18, 18, 6],
[4, 6, 6, 6, 2]],
[[16, 24, 24, 24, 8],
[24, 36, 36, 36, 12],
[8, 12, 12, 12, 4]],
[[16, 24, 24, 24, 8],
[24, 36, 36, 36, 12],
[8, 12, 12, 12, 4]]]], dtype=np.int32)
np.testing.assert_array_equal(dx_value_expected, dx_value_obtained)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_mirror_pad_fwd_back_4d_int32_symm():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# set constants
shape = (2, 3, 3, 5)
pads = ((1, 0), (2, 0), (1, 2), (3, 4))
total_val = np.prod(shape)
test_arr_np = np.arange(total_val).reshape(shape) + 1
test_arr_ms = Tensor(test_arr_np, dtype=mindspore.int32)
# fwd_pass_check
op = nn.Pad(mode="SYMMETRIC", paddings=pads)
expected_np_result = np.pad(test_arr_np, pads, 'symmetric')
obtained_ms_res = op(test_arr_ms).asnumpy()
np.testing.assert_array_equal(expected_np_result, obtained_ms_res)
# backwards pass check
GradNet = Grad(Net(pads, "SYMMETRIC"))
dy_value = Tensor(np.ones(obtained_ms_res.shape), dtype=mindspore.int32)
dx_value_obtained = GradNet(test_arr_ms, dy_value)[0].asnumpy()
dx_value_expected = np.array([[[[16, 24, 24, 16, 16],
[16, 24, 24, 16, 16],
[16, 24, 24, 16, 16]],
[[16, 24, 24, 16, 16],
[16, 24, 24, 16, 16],
[16, 24, 24, 16, 16]],
[[8, 12, 12, 8, 8],
[8, 12, 12, 8, 8],
[8, 12, 12, 8, 8]]],
[[[8, 12, 12, 8, 8],
[8, 12, 12, 8, 8],
[8, 12, 12, 8, 8]],
[[8, 12, 12, 8, 8],
[8, 12, 12, 8, 8],
[8, 12, 12, 8, 8]],
[[4, 6, 6, 4, 4],
[4, 6, 6, 4, 4],
[4, 6, 6, 4, 4]]]], dtype=np.int32)
np.testing.assert_array_equal(dx_value_expected, dx_value_obtained)

View File

@ -0,0 +1,251 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops.composite import GradOperation
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_pad_basic():
"""
Test array is being padded with 0's
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# float32
test_arr = np.array([[1, 2], [3, 4]]).astype(np.float32)
test_arr_expected = np.array(
[[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float32)
x_test = Tensor(test_arr, dtype=mindspore.float32)
pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1)))
y_test = pad_op(x_test).asnumpy()
np.testing.assert_array_equal(y_test, test_arr_expected)
# float16
test_arr = np.array([[1, 2], [3, 4]]).astype(np.float16)
test_arr_expected = np.array(
[[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float16)
x_test = Tensor(test_arr, dtype=mindspore.float16)
pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1)))
y_test = pad_op(x_test).asnumpy()
np.testing.assert_array_equal(y_test, test_arr_expected)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_pad_row():
"""
Test correct row padding
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
test_arr_1 = np.random.rand(40, 40).astype(np.float32)
test_paddings_1 = ((2, 3), (0, 0))
test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32)
test_paddings_2 = ((0, 0), (0, 0), (3, 0), (0, 0))
pad_op_row_1 = nn.Pad(mode='CONSTANT', paddings=test_paddings_1)
pad_op_row_2 = nn.Pad(mode='CONSTANT', paddings=test_paddings_2)
x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32)
x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32)
y_test_1 = pad_op_row_1(x_test_1).asnumpy()
y_test_2 = pad_op_row_2(x_test_2).asnumpy()
# check size
assert y_test_1.shape == (45, 40)
assert y_test_2.shape == (3, 10, 33, 30)
# check values - select correct sections
np.testing.assert_equal(y_test_1[2:-3, :], test_arr_1)
np.testing.assert_equal(y_test_2[:, :, 3:, :], test_arr_2)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_pad_column():
"""
Test correct column padding
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_arr_1 = np.random.randn(40, 40).astype(np.float32)
test_paddings_1 = ((0, 0), (3, 3))
test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32)
test_paddings_2 = ((0, 0), (0, 0), (0, 0), (6, 1))
pad_op_col_1 = nn.Pad(mode='CONSTANT', paddings=test_paddings_1)
pad_op_col_2 = nn.Pad(mode='CONSTANT', paddings=test_paddings_2)
x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32)
x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32)
y_test_1 = pad_op_col_1(x_test_1).asnumpy()
y_test_2 = pad_op_col_2(x_test_2).asnumpy()
# check size
assert y_test_1.shape == (40, 46)
assert y_test_2.shape == (3, 10, 30, 37)
# check values - select correct sections - should match
np.testing.assert_equal(y_test_1[:, 3:-3], test_arr_1)
np.testing.assert_equal(y_test_2[:, :, :, 6:-1], test_arr_2)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_pad_3d_pad():
"""
Test full 3d padding, with all 3 input types
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# float32
test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32)
test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2)) # padding 3 dims now
pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
x_test = Tensor(np.array(test_arr), dtype=mindspore.float32)
y_test = pad_op_3d(x_test).asnumpy()
assert y_test.shape == (5, 6, 31, 32)
np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
# float16
test_arr = np.random.randn(5, 3, 30, 30).astype(np.float16)
test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2))
pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
x_test = Tensor(np.array(test_arr), dtype=mindspore.float16)
y_test = pad_op_3d(x_test).asnumpy()
assert y_test.shape == (5, 6, 31, 32)
np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
# int32
test_arr = np.random.randint(1, 3000, (5, 3, 30, 30)).astype(np.int32)
test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2))
pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
x_test = Tensor(np.array(test_arr), dtype=mindspore.int32)
y_test = pad_op_3d(x_test).asnumpy()
assert y_test.shape == (5, 6, 31, 32)
np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
# For testing backprop
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.pad = nn.Pad(mode="CONSTANT", paddings=(
(0, 0), (4, 3), (1, 1), (0, 2)))
def construct(self, x):
return self.pad(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_pad_3d_backprop():
"""
Confirm correct 3d padding backprop
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
net = Grad(Net())
padded_shape = (5, 10, 32, 32)
# float32
test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32)
x_test = Tensor(test_arr, dtype=mindspore.float32)
dy = np.random.randn(*padded_shape).astype(np.float32)
expected_dx = dy[:, 4:-3, 1:-1, :-2]
dx = net(x_test, Tensor(dy))
dx = dx[0].asnumpy()
np.testing.assert_array_equal(dx, expected_dx)
# float16
test_arr = np.random.randn(5, 3, 30, 30).astype(np.float16)
x_test = Tensor(test_arr, dtype=mindspore.float16)
dy = np.random.randn(*padded_shape).astype(np.float16)
expected_dx = dy[:, 4:-3, 1:-1, :-2]
dx = net(x_test, Tensor(dy))
dx = dx[0].asnumpy()
np.testing.assert_array_equal(dx, expected_dx)
# int32
test_arr = np.random.randint(1, 3000, (5, 3, 30, 30)).astype(np.int32)
x_test = Tensor(test_arr, dtype=mindspore.int32)
dy = np.random.randn(*padded_shape).astype(np.int32)
expected_dx = dy[:, 4:-3, 1:-1, :-2]
dx = net(x_test, Tensor(dy))
dx = dx[0].asnumpy()
np.testing.assert_array_equal(dx, expected_dx)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_pad_error_cases():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# TEST 1 - Neg padding values
test_op = nn.Pad(paddings=((0, 0), (-1, -1)), mode="CONSTANT")
test_arr = np.random.randn(3, 3)
test_arr_ms = Tensor(test_arr, dtype=mindspore.float32)
with pytest.raises(ValueError):
test_op(test_arr_ms)
# TEST 2 - Mismatched input size and paddings - 1D tensor
test_op = nn.Pad(paddings=((0, 0), (1, 0)), mode="CONSTANT")
test_arr = np.random.randn(3) # 1D Tensor
test_arr_ms = Tensor(test_arr, dtype=mindspore.float32)
with pytest.raises(ValueError):
test_op(test_arr_ms)
# TEST 3 - Mismatched input size and paddings - 2D tensor, 3D padding
test_op = nn.Pad(paddings=((0, 0), (1, 0)), mode="CONSTANT") # 2D Padding
test_arr = np.random.randn(1, 3, 3) # 3D Tensor
test_arr_ms = Tensor(test_arr, dtype=mindspore.float32)
with pytest.raises(ValueError):
test_op(test_arr_ms)
# TEST 4 - 1D Paddings should not work
with pytest.raises(TypeError):
test_op = nn.Pad(paddings=((0, 2)), mode="CONSTANT")
# TEST 5 - Padding beyond 4d - (added check in nn file in PR)
with pytest.raises(ValueError):
_ = nn.Pad(paddings=((0, 0), (0, 0,), (0, 0), (0, 0),
(1, 0)), mode="CONSTANT") # 2D Padding