GPU supports p2p nccl interfaces

This commit is contained in:
ZPaC 2020-11-03 20:51:30 +08:00
parent dd86f0234d
commit db3a2d60cb
23 changed files with 637 additions and 221 deletions

View File

@ -57,7 +57,9 @@ if (ENABLE_GPU)
)
file(GLOB_RECURSE GPU_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "gpu/*.cc")
list(REMOVE_ITEM GPU_SRC_LIST "gpu/nccl/nccl_gpu_kernel.cc")
list(REMOVE_ITEM GPU_SRC_LIST "gpu/nccl/nccl_collective_gpu_kernel.cc")
list(REMOVE_ITEM GPU_SRC_LIST "gpu/nccl/nccl_send_gpu_kernel.cc")
list(REMOVE_ITEM GPU_SRC_LIST "gpu/nccl/nccl_recv_gpu_kernel.cc")
if (ENABLE_MPI)
include(ExternalProject)

View File

@ -1,5 +1,5 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -14,48 +14,48 @@
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nccl/nccl_gpu_kernel.h"
#include "backend/kernel_compiler/gpu/nccl/nccl_collective_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(
AllReduce, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
NcclGpuKernel, float)
NcclCollectiveGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
AllReduce, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
NcclGpuKernel, half)
NcclCollectiveGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(AllReduce,
KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
NcclGpuKernel, int)
NcclCollectiveGpuKernel, int)
MS_REG_GPU_KERNEL_ONE(
AllGather, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
NcclGpuKernel, float)
NcclCollectiveGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
AllGather, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
NcclGpuKernel, half)
NcclCollectiveGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(AllGather,
KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
NcclGpuKernel, int)
NcclCollectiveGpuKernel, int)
MS_REG_GPU_KERNEL_ONE(
ReduceScatter, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
NcclGpuKernel, float)
NcclCollectiveGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
ReduceScatter, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
NcclGpuKernel, half)
NcclCollectiveGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(ReduceScatter,
KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
NcclGpuKernel, int)
NcclCollectiveGpuKernel, int)
MS_REG_GPU_KERNEL_ONE(
Broadcast, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
NcclGpuKernel, float)
NcclCollectiveGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
Broadcast, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
NcclGpuKernel, half)
NcclCollectiveGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(Broadcast,
KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
NcclGpuKernel, int)
NcclCollectiveGpuKernel, int)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,211 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_COLLECTIVE_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_COLLECTIVE_GPU_KERNEL_H_
#include <dlfcn.h>
#include <stdint.h>
#include <vector>
#include <string>
#include <map>
#include "backend/kernel_compiler/gpu/nccl/nccl_gpu_kernel.h"
namespace mindspore {
namespace kernel {
enum NcclKernelType {
NCCL_ALL_REDUCE = 0,
NCCL_ALL_GATHER,
NCCL_REDUCE_SCATTER,
NCCL_BROADCAST,
NCCL_INVALID_TYPE = 255
};
const std::map<std::string, NcclKernelType> kNcclTypeMap = {
{"AllReduce", NCCL_ALL_REDUCE},
{"AllGather", NCCL_ALL_GATHER},
{"ReduceScatter", NCCL_REDUCE_SCATTER},
{"Broadcast", NCCL_BROADCAST},
};
template <typename T>
class NcclCollectiveGpuKernel : public NcclGpuKernel {
public:
NcclCollectiveGpuKernel()
: nccl_kernel_type_(NCCL_INVALID_TYPE),
nccl_reduce_type_(ncclSum),
input_size_(0),
output_size_(0),
root_(0),
collective_handle_(nullptr),
comm_stream_(nullptr) {}
~NcclCollectiveGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *input_addr = GetDeviceAddress<T>(inputs, 0);
T *output_addr = GetDeviceAddress<T>(outputs, 0);
cudaStream_t stream = comm_stream_ ? comm_stream_ : reinterpret_cast<cudaStream_t>(stream_ptr);
switch (nccl_kernel_type_) {
case NCCL_ALL_REDUCE: {
auto all_reduce_funcptr =
reinterpret_cast<AllReduce>(dlsym(const_cast<void *>(collective_handle_), "AllReduce"));
MS_EXCEPTION_IF_NULL(all_reduce_funcptr);
CHECK_NCCL_RET_WITH_EXCEPT((*all_reduce_funcptr)(input_addr, output_addr, output_size_ / sizeof(T),
nccl_data_type_, nccl_reduce_type_, stream, group_name_),
"ncclAllReduce failed");
break;
}
case NCCL_ALL_GATHER: {
auto all_gather_funcptr =
reinterpret_cast<AllGather>(dlsym(const_cast<void *>(collective_handle_), "AllGather"));
MS_EXCEPTION_IF_NULL(all_gather_funcptr);
CHECK_NCCL_RET_WITH_EXCEPT(
(*all_gather_funcptr)(input_addr, output_addr, input_size_ / sizeof(T), nccl_data_type_, stream, group_name_),
"ncclAllGather failed");
break;
}
case NCCL_REDUCE_SCATTER: {
auto reduce_scatter_funcptr =
reinterpret_cast<ReduceScatter>(dlsym(const_cast<void *>(collective_handle_), "ReduceScatter"));
MS_EXCEPTION_IF_NULL(reduce_scatter_funcptr);
CHECK_NCCL_RET_WITH_EXCEPT((*reduce_scatter_funcptr)(input_addr, output_addr, output_size_ / sizeof(T),
nccl_data_type_, nccl_reduce_type_, stream, group_name_),
"ncclReduceScatter failed");
break;
}
case NCCL_BROADCAST: {
auto broadcast_funcptr =
reinterpret_cast<Broadcast>(dlsym(const_cast<void *>(collective_handle_), "Broadcast"));
MS_EXCEPTION_IF_NULL(broadcast_funcptr);
for (int i = 0; i < SizeToInt(input_size_list_.size()); ++i) {
input_addr = GetDeviceAddress<T>(inputs, i);
output_addr = GetDeviceAddress<T>(outputs, i);
CHECK_NCCL_RET_WITH_EXCEPT((*broadcast_funcptr)(input_addr, output_addr, output_size_list_[i] / sizeof(T),
nccl_data_type_, root_, stream, group_name_),
"ncclBroadcast failed");
}
break;
}
default: {
MS_LOG(EXCEPTION) << "Kernel type " << nccl_kernel_type_ << " is not supported.";
}
}
return true;
}
bool Init(const CNodePtr &kernel_node) override {
nccl_data_type_ = nccl_dtype(AnfAlgo::GetInputDeviceDataType(kernel_node, 0));
InferCommType(kernel_node);
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
for (size_t i = 0; i < input_num; ++i) {
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, i);
size_t size = sizeof(T);
for (size_t j = 0; j < shape.size(); j++) {
size *= IntToSize(shape[j]);
}
size_t aligned_size = (nccl_kernel_type_ != NCCL_ALL_REDUCE) ? size : AlignMemorySize(size);
input_size_list_.push_back(aligned_size);
input_size_ += aligned_size;
}
for (size_t i = 0; i < output_num; ++i) {
auto shape = AnfAlgo::GetOutputInferShape(kernel_node, i);
size_t size = sizeof(T);
for (size_t j = 0; j < shape.size(); j++) {
size *= IntToSize(shape[j]);
}
size_t aligned_size = (nccl_kernel_type_ != NCCL_ALL_REDUCE) ? size : AlignMemorySize(size);
output_size_list_.push_back(aligned_size);
output_size_ += aligned_size;
}
group_name_ = GetAttr<std::string>(kernel_node, kAttrGroup);
MS_LOG(INFO) << AnfAlgo::GetCNodeName(kernel_node) << " for group " << group_name_;
auto comm_stream_attr = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("stream_id");
if (comm_stream_attr) {
comm_stream_ = reinterpret_cast<cudaStream_t>(GetValue<uintptr_t>(comm_stream_attr));
MS_EXCEPTION_IF_NULL(comm_stream_);
}
collective_handle_ = device::gpu::CollectiveInitializer::instance().collective_handle();
MS_EXCEPTION_IF_NULL(collective_handle_);
return true;
}
protected:
void InitSizeLists() override { return; }
private:
void InferCommType(const CNodePtr &kernel_node) {
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
auto iter = kNcclTypeMap.find(kernel_name);
if (iter == kNcclTypeMap.end()) {
MS_LOG(EXCEPTION) << "Kernel " << kernel_name << " is not supported.";
} else {
nccl_kernel_type_ = iter->second;
}
auto reduce_op = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr(kAttrOp);
if (reduce_op) {
std::string type = GetValue<std::string>(reduce_op);
if (type == "sum") {
nccl_reduce_type_ = ncclSum;
} else if (type == "max") {
nccl_reduce_type_ = ncclMax;
} else if (type == "min") {
nccl_reduce_type_ = ncclMin;
} else if (type == "prod") {
nccl_reduce_type_ = ncclProd;
} else {
MS_LOG(EXCEPTION) << "Nccl reduce type " << type << " is not supported.";
}
}
auto root_rank = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr(kAttrRootRank);
if (root_rank) {
root_ = static_cast<int>(GetValue<int64_t>(root_rank));
}
return;
}
size_t AlignMemorySize(size_t size) const {
if (size == 0) {
return COMMUNICATION_MEM_ALIGN_SIZE;
}
return ((size + COMMUNICATION_MEM_ALIGN_SIZE - 1) / COMMUNICATION_MEM_ALIGN_SIZE) * COMMUNICATION_MEM_ALIGN_SIZE;
}
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
NcclKernelType nccl_kernel_type_;
ncclRedOp_t nccl_reduce_type_;
size_t input_size_;
size_t output_size_;
int root_;
const void *collective_handle_;
cudaStream_t comm_stream_;
static const size_t COMMUNICATION_MEM_ALIGN_SIZE = 16;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_COLLECTIVE_GPU_KERNEL_H_

View File

@ -1,5 +1,5 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -18,11 +18,9 @@
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_GPU_KERNEL_H_
#include <nccl.h>
#include <dlfcn.h>
#include <stdint.h>
#include <vector>
#include <string>
#include <map>
#include <string>
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/kernel_constants.h"
@ -30,20 +28,6 @@
namespace mindspore {
namespace kernel {
enum NcclKernelType {
NCCL_ALL_REDUCE = 0,
NCCL_ALL_GATHER,
NCCL_REDUCE_SCATTER,
NCCL_BROADCAST,
NCCL_INVALID_TYPE = 255
};
const std::map<std::string, NcclKernelType> kNcclTypeMap = {
{"AllReduce", NCCL_ALL_REDUCE},
{"AllGather", NCCL_ALL_GATHER},
{"ReduceScatter", NCCL_REDUCE_SCATTER},
{"Broadcast", NCCL_BROADCAST},
};
static std::map<std::string, ncclDataType_t> kNcclDtypeMap = {
{"kNumberTypeFloat32", ncclFloat}, {"kNumberTypeFloat16", ncclHalf}, {"kNumberTypeInt32", ncclInt}};
@ -53,174 +37,22 @@ typedef ncclResult_t (*AllGather)(const void *, void *, size_t, ncclDataType_t,
typedef ncclResult_t (*ReduceScatter)(const void *, void *, size_t, ncclDataType_t, ncclRedOp_t, cudaStream_t,
const std::string &);
typedef ncclResult_t (*Broadcast)(const void *, void *, size_t, ncclDataType_t, int, cudaStream_t, const std::string &);
typedef ncclResult_t (*Send)(const void *, size_t, ncclDataType_t, int, cudaStream_t, const std::string &);
typedef ncclResult_t (*Recv)(void *, size_t, ncclDataType_t, int, cudaStream_t, const std::string &);
typedef ncclResult_t (*GroupStart)();
typedef ncclResult_t (*GroupEnd)();
typedef std::vector<int> (*GetGroupRanks)(const std::string &);
template <typename T>
class NcclGpuKernel : public GpuKernel {
public:
NcclGpuKernel()
: nccl_kernel_type_(NCCL_INVALID_TYPE),
nccl_reduce_type_(ncclSum),
group_name_(""),
input_size_(0),
output_size_(0),
root_(0),
collective_handle_(nullptr),
comm_stream_(nullptr) {}
NcclGpuKernel() : group_name_(""), nccl_data_type_(ncclHalf) {}
~NcclGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *input_addr = GetDeviceAddress<T>(inputs, 0);
T *output_addr = GetDeviceAddress<T>(outputs, 0);
cudaStream_t stream = comm_stream_ ? comm_stream_ : reinterpret_cast<cudaStream_t>(stream_ptr);
switch (nccl_kernel_type_) {
case NCCL_ALL_REDUCE: {
auto all_reduce_funcptr =
reinterpret_cast<AllReduce>(dlsym(const_cast<void *>(collective_handle_), "AllReduce"));
MS_EXCEPTION_IF_NULL(all_reduce_funcptr);
CHECK_NCCL_RET_WITH_EXCEPT((*all_reduce_funcptr)(input_addr, output_addr, output_size_ / sizeof(T),
nccl_data_type_, nccl_reduce_type_, stream, group_name_),
"ncclAllReduce failed");
break;
}
case NCCL_ALL_GATHER: {
auto all_gather_funcptr =
reinterpret_cast<AllGather>(dlsym(const_cast<void *>(collective_handle_), "AllGather"));
MS_EXCEPTION_IF_NULL(all_gather_funcptr);
CHECK_NCCL_RET_WITH_EXCEPT(
(*all_gather_funcptr)(input_addr, output_addr, input_size_ / sizeof(T), nccl_data_type_, stream, group_name_),
"ncclAllGather failed");
break;
}
case NCCL_REDUCE_SCATTER: {
auto reduce_scatter_funcptr =
reinterpret_cast<ReduceScatter>(dlsym(const_cast<void *>(collective_handle_), "ReduceScatter"));
MS_EXCEPTION_IF_NULL(reduce_scatter_funcptr);
CHECK_NCCL_RET_WITH_EXCEPT((*reduce_scatter_funcptr)(input_addr, output_addr, output_size_ / sizeof(T),
nccl_data_type_, nccl_reduce_type_, stream, group_name_),
"ncclReduceScatter failed");
break;
}
case NCCL_BROADCAST: {
auto broadcast_funcptr =
reinterpret_cast<Broadcast>(dlsym(const_cast<void *>(collective_handle_), "Broadcast"));
MS_EXCEPTION_IF_NULL(broadcast_funcptr);
for (int i = 0; i < SizeToInt(input_size_list_.size()); ++i) {
input_addr = GetDeviceAddress<T>(inputs, i);
output_addr = GetDeviceAddress<T>(outputs, i);
CHECK_NCCL_RET_WITH_EXCEPT((*broadcast_funcptr)(input_addr, output_addr, output_size_list_[i] / sizeof(T),
nccl_data_type_, root_, stream, group_name_),
"ncclBroadcast failed");
}
break;
}
default: {
MS_LOG(EXCEPTION) << "Kernel type " << nccl_kernel_type_ << " is not supported.";
}
}
return true;
}
bool Init(const CNodePtr &kernel_node) override {
nccl_data_type_ = kNcclDtypeMap[TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0))];
InferCommType(kernel_node);
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
for (size_t i = 0; i < input_num; ++i) {
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, i);
size_t size = sizeof(T);
for (size_t j = 0; j < shape.size(); j++) {
size *= IntToSize(shape[j]);
}
size_t aligned_size = (nccl_kernel_type_ != NCCL_ALL_REDUCE) ? size : AlignMemorySize(size);
input_size_list_.push_back(aligned_size);
input_size_ += aligned_size;
}
for (size_t i = 0; i < output_num; ++i) {
auto shape = AnfAlgo::GetOutputInferShape(kernel_node, i);
size_t size = sizeof(T);
for (size_t j = 0; j < shape.size(); j++) {
size *= IntToSize(shape[j]);
}
size_t aligned_size = (nccl_kernel_type_ != NCCL_ALL_REDUCE) ? size : AlignMemorySize(size);
output_size_list_.push_back(aligned_size);
output_size_ += aligned_size;
}
group_name_ = GetAttr<std::string>(kernel_node, kAttrGroup);
MS_LOG(INFO) << AnfAlgo::GetCNodeName(kernel_node) << " for group " << group_name_;
auto comm_stream_attr = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("stream_id");
if (comm_stream_attr) {
comm_stream_ = reinterpret_cast<cudaStream_t>(GetValue<uintptr_t>(comm_stream_attr));
MS_EXCEPTION_IF_NULL(comm_stream_);
}
collective_handle_ = device::gpu::CollectiveInitializer::instance().collective_handle();
MS_EXCEPTION_IF_NULL(collective_handle_);
return true;
}
protected:
void InitSizeLists() override { return; }
ncclDataType_t nccl_dtype(const TypeId &type_id) { return kNcclDtypeMap[TypeIdLabel(type_id)]; }
private:
void InferCommType(const CNodePtr &kernel_node) {
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
auto iter = kNcclTypeMap.find(kernel_name);
if (iter == kNcclTypeMap.end()) {
MS_LOG(EXCEPTION) << "Kernel " << kernel_name << " is not supported.";
} else {
nccl_kernel_type_ = iter->second;
}
auto reduce_op = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr(kAttrOp);
if (reduce_op) {
std::string type = GetValue<std::string>(reduce_op);
if (type == "sum") {
nccl_reduce_type_ = ncclSum;
} else if (type == "max") {
nccl_reduce_type_ = ncclMax;
} else if (type == "min") {
nccl_reduce_type_ = ncclMin;
} else if (type == "prod") {
nccl_reduce_type_ = ncclProd;
} else {
MS_LOG(EXCEPTION) << "Nccl reduce type " << type << " is not supported.";
}
}
auto root_rank = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr(kAttrRootRank);
if (root_rank) {
root_ = static_cast<int>(GetValue<int64_t>(root_rank));
}
return;
}
size_t AlignMemorySize(size_t size) const {
if (size == 0) {
return COMMUNICATION_MEM_ALIGN_SIZE;
}
return ((size + COMMUNICATION_MEM_ALIGN_SIZE - 1) / COMMUNICATION_MEM_ALIGN_SIZE) * COMMUNICATION_MEM_ALIGN_SIZE;
}
NcclKernelType nccl_kernel_type_;
ncclRedOp_t nccl_reduce_type_;
ncclDataType_t nccl_data_type_;
std::string group_name_;
size_t input_size_;
size_t output_size_;
int root_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
const void *collective_handle_;
cudaStream_t comm_stream_;
static const size_t COMMUNICATION_MEM_ALIGN_SIZE = 16;
ncclDataType_t nccl_data_type_;
};
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,28 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nccl/nccl_recv_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(Receive, KernelAttr().AddAllSameAttr(true).AddOutputAttr(kNumberTypeFloat32), NcclRecvGpuKernel,
float);
MS_REG_GPU_KERNEL_ONE(Receive, KernelAttr().AddAllSameAttr(true).AddOutputAttr(kNumberTypeFloat16), NcclRecvGpuKernel,
half);
MS_REG_GPU_KERNEL_ONE(Receive, KernelAttr().AddAllSameAttr(true).AddOutputAttr(kNumberTypeInt32), NcclRecvGpuKernel,
int);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,88 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_RECV_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_RECV_GPU_KERNEL_H_
#include <vector>
#include <string>
#include <functional>
#include "backend/kernel_compiler/gpu/nccl/nccl_gpu_kernel.h"
namespace mindspore {
namespace kernel {
template <typename T>
class NcclRecvGpuKernel : public NcclGpuKernel {
public:
NcclRecvGpuKernel() : src_rank_(-1), collective_handle_(nullptr) {}
~NcclRecvGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &outputs,
void *stream_ptr) override {
T *output_addr = GetDeviceAddress<T>(outputs, 0);
auto nccl_recv_func = reinterpret_cast<Recv>(dlsym(const_cast<void *>(collective_handle_), "Recv"));
MS_EXCEPTION_IF_NULL(nccl_recv_func);
CHECK_NCCL_RET_WITH_EXCEPT((*nccl_recv_func)(output_addr, output_size_list_[0] / sizeof(T), nccl_data_type_,
src_rank_, reinterpret_cast<cudaStream_t>(stream_ptr), group_name_),
"ncclRecv failed");
return true;
}
bool Init(const CNodePtr &kernel_node) override {
MS_EXCEPTION_IF_NULL(kernel_node);
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 0) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but NCCL receive needs 0 input.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but NCCL receive needs 1 output.";
return false;
}
src_rank_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "src_rank"));
group_name_ = GetAttr<std::string>(kernel_node, kAttrGroup);
nccl_data_type_ = nccl_dtype(AnfAlgo::GetOutputDeviceDataType(kernel_node, 0));
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
size_t output_size =
std::accumulate(output_shape.begin(), output_shape.end(), sizeof(T), std::multiplies<size_t>());
output_size_list_.push_back(output_size);
MS_LOG(INFO) << "NcclRecv source rank is " << src_rank_ << ", group name is " << group_name_;
collective_handle_ = device::gpu::CollectiveInitializer::instance().collective_handle();
MS_EXCEPTION_IF_NULL(collective_handle_);
return true;
}
protected:
void InitSizeLists() override {}
private:
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
int src_rank_;
const void *collective_handle_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_RECV_GPU_KERNEL_H_

View File

@ -0,0 +1,31 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nccl/nccl_send_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(
Send, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
NcclSendGpuKernel, float);
MS_REG_GPU_KERNEL_ONE(
Send, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
NcclSendGpuKernel, half);
MS_REG_GPU_KERNEL_ONE(Send,
KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
NcclSendGpuKernel, int);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,84 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_SEND_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_SEND_GPU_KERNEL_H_
#include <vector>
#include <string>
#include <functional>
#include "backend/kernel_compiler/gpu/nccl/nccl_gpu_kernel.h"
namespace mindspore {
namespace kernel {
template <typename T>
class NcclSendGpuKernel : public NcclGpuKernel {
public:
NcclSendGpuKernel() : dest_rank_(-1), collective_handle_(nullptr) {}
~NcclSendGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *input_addr = GetDeviceAddress<T>(inputs, 0);
auto nccl_send_func = reinterpret_cast<Send>(dlsym(const_cast<void *>(collective_handle_), "Send"));
MS_EXCEPTION_IF_NULL(nccl_send_func);
CHECK_NCCL_RET_WITH_EXCEPT((*nccl_send_func)(input_addr, input_size_list_[0] / sizeof(T), nccl_data_type_,
dest_rank_, reinterpret_cast<cudaStream_t>(stream_ptr), group_name_),
"ncclSend failed");
return true;
}
bool Init(const CNodePtr &kernel_node) override {
MS_EXCEPTION_IF_NULL(kernel_node);
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but NCCL send needs 1 input.";
return false;
}
dest_rank_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "dest_rank"));
group_name_ = GetAttr<std::string>(kernel_node, kAttrGroup);
nccl_data_type_ = nccl_dtype(AnfAlgo::GetInputDeviceDataType(kernel_node, 0));
MS_LOG(INFO) << "NcclSend dest rank is " << dest_rank_ << ", group name is " << group_name_;
auto input_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
size_t input_size = std::accumulate(input_shape.begin(), input_shape.end(), sizeof(T), std::multiplies<size_t>());
input_size_list_.push_back(input_size);
output_size_list_.push_back(0);
collective_handle_ = device::gpu::CollectiveInitializer::instance().collective_handle();
MS_EXCEPTION_IF_NULL(collective_handle_);
return true;
}
protected:
void InitSizeLists() override {}
private:
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
int dest_rank_;
const void *collective_handle_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NCCL_SEND_GPU_KERNEL_H_

View File

@ -207,7 +207,7 @@ SendAttr PipelineTransformer::InsertSend(const FuncGraphPtr &graph, const AnfNod
auto dest_rank = global_rank_ + (user_node_stage - node_stage) * per_stage_rank_num_;
Attr attr_rank = std::make_pair("dest_rank", MakeValue(dest_rank));
OperatorAttrs attrs = {attr_tag, attr_rank};
auto send_op = CreatOpInstance(attrs, "_Send", "send");
auto send_op = CreatOpInstance(attrs, "Send", "send");
auto send_node = NewValueNode(send_op);
auto prim = GetValueNode<PrimitivePtr>(send_node);
auto shape_type_pair = GetShapeType(parameter);
@ -233,7 +233,7 @@ void PipelineTransformer::InsertReceive(const FuncGraphPtr &graph, const AnfNode
Attr attr_shape = std::make_pair("shape", shape_type_pair.first);
Attr attr_dtype = std::make_pair("dtype", shape_type_pair.second);
OperatorAttrs attrs = {attr_tag, attr_rank, attr_shape, attr_dtype};
auto recv_op = CreatOpInstance(attrs, "_Receive", "recv");
auto recv_op = CreatOpInstance(attrs, "Receive", "recv");
std::vector<AnfNodePtr> recv_input = {NewValueNode(recv_op), virtual_param_};
auto recv = graph->NewCNode(recv_input);
manager_->SetEdge(use_node, index, recv);

View File

@ -18,6 +18,7 @@
#define MINDSPORE_CCSRC_RUNTIME_DEVICE_GPU_COLLECTIVE_COMMON_H_
#include <nccl.h>
#include <vector>
#include <sstream>
#include "pybind11/pybind11.h"
@ -31,6 +32,7 @@ struct NcclGroupInfo {
int rank;
ncclUniqueId unique_id;
ncclComm_t comm;
std::vector<int> group_ranks;
};
#define CHECK_RET(expression, result, message) \
{ \

View File

@ -53,3 +53,21 @@ ncclResult_t Broadcast(const void *input_addr, void *output_addr, size_t count,
cudaStream_t stream, const std::string &group) {
return NCCLWrapper::instance().Broadcast(input_addr, output_addr, count, data_type, root, stream, group);
}
ncclResult_t Send(const void *send_addr, size_t count, ncclDataType_t data_type, int peer_rank, cudaStream_t stream,
const std::string &group_name) {
return NCCLWrapper::instance().Send(send_addr, count, data_type, peer_rank, stream, group_name);
}
ncclResult_t Recv(void *recv_addr, size_t count, ncclDataType_t data_type, int peer_rank, cudaStream_t stream,
const std::string &group_name) {
return NCCLWrapper::instance().Recv(recv_addr, count, data_type, peer_rank, stream, group_name);
}
ncclResult_t GroupStart() { return NCCLWrapper::instance().GroupStart(); }
ncclResult_t GroupEnd() { return NCCLWrapper::instance().GroupEnd(); }
std::vector<int> GetGroupRanks(const std::string &group_name) {
return NCCLWrapper::instance().GetGroupRanks(group_name);
}

View File

@ -48,3 +48,10 @@ extern "C" EXPORT_WRAPPER ncclResult_t ReduceScatter(const void *input_addr, voi
extern "C" EXPORT_WRAPPER ncclResult_t Broadcast(const void *input_addr, void *output_addr, size_t count,
ncclDataType_t data_type, int root, cudaStream_t stream,
const std::string &group);
extern "C" EXPORT_WRAPPER ncclResult_t Send(const void *send_addr, size_t count, ncclDataType_t data_type,
int peer_rank, cudaStream_t stream, const std::string &group_name);
extern "C" EXPORT_WRAPPER ncclResult_t Recv(void *recv_addr, size_t count, ncclDataType_t data_type, int peer_rank,
cudaStream_t stream, const std::string &group_name);
extern "C" EXPORT_WRAPPER ncclResult_t GroupStart();
extern "C" EXPORT_WRAPPER ncclResult_t GroupEnd();
extern "C" EXPORT_WRAPPER std::vector<int> GetGroupRanks(const std::string &group_name);

View File

@ -68,7 +68,7 @@ bool MPIWrapper::CreateCommGroup(const std::string &group_name, const std::vecto
return false;
}
NcclGroupInfo nccl_group = {static_cast<int>(ranks.size()), group_rank[0], group_unique_id, nullptr};
NcclGroupInfo nccl_group = {static_cast<int>(ranks.size()), group_rank[0], group_unique_id, nullptr, ranks};
NCCLWrapper::instance().AddGroupInfo(group_name, &nccl_group);
return true;
}
@ -122,7 +122,11 @@ void MPIWrapper::Init() {
CHECK_RET(MPI_Bcast(reinterpret_cast<void *>(&unique_id), sizeof(unique_id), MPI_BYTE, 0, MPI_COMM_WORLD),
MPI_SUCCESS, "Failed to broadcast nccl unique id.");
NcclGroupInfo world_group = {rank_size_, rank_id_, unique_id, nullptr};
std::vector<int> world_group_ranks = {};
for (int global_rank = 0; global_rank < rank_size_; global_rank++) {
world_group_ranks.push_back(global_rank);
}
NcclGroupInfo world_group = {rank_size_, rank_id_, unique_id, nullptr, world_group_ranks};
NCCLWrapper::instance().AddGroupInfo(NCCL_WORLD_GROUP, &world_group);
return;
}

View File

@ -14,6 +14,7 @@
* limitations under the License.
*/
#include <vector>
#include "runtime/device/gpu/distribution/nccl_wrapper.h"
namespace mindspore {
@ -74,6 +75,24 @@ ncclResult_t NCCLWrapper::Broadcast(const void *input_addr, void *output_addr, s
return ncclBroadcast(input_addr, output_addr, count, data_type, root, group_comm, stream);
}
ncclResult_t NCCLWrapper::Send(const void *send_addr, size_t count, ncclDataType_t data_type, int peer_rank,
cudaStream_t stream, const std::string &group_name) {
CHECK_RET(group_info_.count(group_name), 1, "Failed to find group info for Send by the group name " + group_name);
ncclComm_t group_comm = group_info_[group_name].comm;
return ncclSend(send_addr, count, data_type, peer_rank, group_comm, stream);
}
ncclResult_t NCCLWrapper::Recv(void *recv_addr, size_t count, ncclDataType_t data_type, int peer_rank,
cudaStream_t stream, const std::string &group_name) {
CHECK_RET(group_info_.count(group_name), 1, "Failed to find group info for Recv by the group name " + group_name);
ncclComm_t group_comm = group_info_[group_name].comm;
return ncclRecv(recv_addr, count, data_type, peer_rank, group_comm, stream);
}
ncclResult_t NCCLWrapper::GroupStart() { return ncclGroupStart(); }
ncclResult_t NCCLWrapper::GroupEnd() { return ncclGroupEnd(); }
void NCCLWrapper::AddGroupInfo(const std::string &group_name, NcclGroupInfo *group) {
if (comm_init_done_) {
CHECK_RET(ncclCommInitRank(&(group->comm), group->size, group->unique_id, group->rank), ncclSuccess,
@ -92,6 +111,12 @@ void NCCLWrapper::DestroyGroup(const std::string &group_name) {
group_info_.erase(group_iter);
return;
}
std::vector<int> NCCLWrapper::GetGroupRanks(const std::string &group_name) {
CHECK_RET(group_info_.count(group_name), 1,
"Failed to find group info for GetGroupRanks by the group name " + group_name);
return group_info_[group_name].group_ranks;
}
} // namespace gpu
} // namespace device
} // namespace mindspore

View File

@ -21,6 +21,7 @@
#include <stdlib.h>
#include <nccl.h>
#include <string>
#include <vector>
#include <map>
#include "runtime/device/gpu/distribution/collective_common.h"
@ -34,16 +35,23 @@ class NCCLWrapper {
static NCCLWrapper &instance();
ncclUniqueId nccl_unique_id() const;
void InitNCCLComm();
ncclResult_t AllReduce(const void *input_addr, void *output_addr, size_t count, ncclDataType_t datatype,
ncclRedOp_t op, cudaStream_t stream, const std::string &group_name = NCCL_WORLD_GROUP);
ncclResult_t AllGather(const void *input_addr, void *output_addr, size_t count, ncclDataType_t datatype,
cudaStream_t stream, const std::string &group_name = NCCL_WORLD_GROUP);
ncclResult_t ReduceScatter(const void *input_addr, void *output_addr, size_t count, ncclDataType_t datatype,
ncclRedOp_t op, cudaStream_t stream, const std::string &group_name = NCCL_WORLD_GROUP);
ncclResult_t Broadcast(const void *input_addr, void *output_addr, size_t count, ncclDataType_t datatype, int root,
cudaStream_t stream, const std::string &group_name = NCCL_WORLD_GROUP);
ncclResult_t AllReduce(const void *input_addr, void *output_addr, size_t count, ncclDataType_t data_type,
ncclRedOp_t op, cudaStream_t stream, const std::string &group_name);
ncclResult_t AllGather(const void *input_addr, void *output_addr, size_t count, ncclDataType_t data_type,
cudaStream_t stream, const std::string &group_name);
ncclResult_t ReduceScatter(const void *input_addr, void *output_addr, size_t count, ncclDataType_t data_type,
ncclRedOp_t op, cudaStream_t stream, const std::string &group_name);
ncclResult_t Broadcast(const void *input_addr, void *output_addr, size_t count, ncclDataType_t data_type, int root,
cudaStream_t stream, const std::string &group_name);
ncclResult_t Send(const void *send_addr, size_t count, ncclDataType_t data_type, int peer_rank, cudaStream_t stream,
const std::string &group_name);
ncclResult_t Recv(void *recv_addr, size_t count, ncclDataType_t data_type, int peer_rank, cudaStream_t stream,
const std::string &group_name);
ncclResult_t GroupStart();
ncclResult_t GroupEnd();
void AddGroupInfo(const std::string &group_name, NcclGroupInfo *group);
void DestroyGroup(const std::string &group_name);
std::vector<int> GetGroupRanks(const std::string &group_name);
private:
NCCLWrapper() : comm_init_done_(false) {}

View File

@ -143,17 +143,17 @@ void InsertStreamSwitchNode(const std::shared_ptr<session::KernelGraph> &kernel_
size_t recv_node_offset = pair.recv_node_offset;
CNodePtr send_node = nullptr;
CNodePtr recv_node = nullptr;
// Step 1: generate Send and Recv CNodes.
// Step 1: Generate stream Send and Recv CNodes.
if (stream_switch_type == kAllReduceStreamSwitch) {
if (!GenSendRecvCNodesForAllReduce(kernel_graph, mock_send_node, mock_recv_node, &send_node, &recv_node)) {
MS_LOG(EXCEPTION) << "Generating CNodes for send and recv failed. Stream switch type: kAllReduceStreamSwitch";
}
}
// Step 2: sort send and recv CNodes by offset.
// Step 2: Sort send and recv CNodes by offset.
ordered_stream_switch_nodes.insert({send_node_offset, send_node});
ordered_stream_switch_nodes.insert({recv_node_offset, recv_node});
}
// Step 3: insert stream switch CNodes into execution kernel list.
// Step 3: Insert stream switch CNodes into execution kernel list.
auto execution_kernels = kernel_graph->execution_order();
for (auto node = ordered_stream_switch_nodes.rbegin(); node != ordered_stream_switch_nodes.rend(); node++) {
execution_kernels.insert(execution_kernels.begin() + node->offset, node->cnode);

View File

@ -185,7 +185,7 @@ inline const PrimitivePtr kPrimSGD = std::make_shared<Primitive>("SGD");
inline const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator");
inline const PrimitivePtr kPrimVirtualDiv = std::make_shared<Primitive>("_VirtualDiv");
inline const PrimitivePtr kPrimVirtualDataset = std::make_shared<Primitive>("_VirtualDataset");
inline const PrimitivePtr kPrimReceive = std::make_shared<Primitive>("_Receive");
inline const PrimitivePtr kPrimReceive = std::make_shared<Primitive>("Receive");
inline const PrimitivePtr kPrimAllReduce = std::make_shared<Primitive>("AllReduce");
inline const PrimitivePtr kPrimAllSwap = std::make_shared<Primitive>("AllSwap");
inline const PrimitivePtr kPrimBroadcast = std::make_shared<Primitive>("Broadcast");

View File

@ -20,7 +20,7 @@ from .. import operations as P
from ...common.tensor import RowTensor
from ..composite.multitype_ops.zeros_like_impl import zeros_like
from ..operations.comm_ops import (AllGather, _HostAllGather, AllReduce, _AlltoAll, Broadcast,
_GetTensorSlice, _MirrorOperator, ReduceOp, _Send, _Receive,
_GetTensorSlice, _MirrorOperator, ReduceOp, Send, Receive,
ReduceScatter, _HostReduceScatter, _VirtualDiv, AllSwap)
from .grad_base import bprop_getters
@ -77,12 +77,12 @@ def get_bprop_all_reduce(self):
return bprop
@bprop_getters.register(_Send)
@bprop_getters.register(Send)
def get_bprop_send(self):
"""Generate bprop for Send."""
shape = self.get_attr_dict()["shape"]
dtype = self.get_attr_dict()["dtype"]
send_grad = _Receive(self.sr_tag, self.rank, shape, dtype, self.group)
send_grad = Receive(self.sr_tag, self.rank, shape, dtype, self.group)
def bprop(x, out, dout):
dx = send_grad()
@ -90,10 +90,10 @@ def get_bprop_send(self):
return bprop
@bprop_getters.register(_Receive)
@bprop_getters.register(Receive)
def get_bprop_receive(self):
"""Generate bprop for Receive."""
receive_grad = _Send(self.tag, self.rank, self.group)
receive_grad = Send(self.tag, self.rank, self.group)
depend = P.Depend()
cast = P.Cast()

View File

@ -36,7 +36,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
Unique, GatherD, Identity, RepeatElements)
from .comm_ops import (AllGather, AllReduce, _AlltoAll, AllSwap, ReduceScatter, Broadcast,
_MirrorOperator, ReduceOp, _VirtualDataset,
_VirtualDiv, _GetTensorSlice, _Send, _Receive,
_VirtualDiv, _GetTensorSlice, Send, Receive,
_HostAllGather, _HostReduceScatter)
from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSummary,
TensorSummary, HistogramSummary, Print, Assert)

View File

@ -116,7 +116,7 @@ class AllReduce(PrimitiveWithInfer):
return x_dtype
class _Send(PrimitiveWithInfer):
class Send(PrimitiveWithInfer):
"""
Send tensors from src_rank to the specified dest_rank.
@ -145,7 +145,7 @@ class _Send(PrimitiveWithInfer):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.depend = P.Depend()
>>> self.send = P._Send(st_tag=0, dest_rank=8, group="hccl_world_group")
>>> self.send = P.Send(st_tag=0, dest_rank=8, group="hccl_world_group")
>>>
>>> def construct(self, x):
>>> out = self.depend(x, self.send(x))
@ -170,7 +170,7 @@ class _Send(PrimitiveWithInfer):
return x_dtype
class _Receive(PrimitiveWithInfer):
class Receive(PrimitiveWithInfer):
"""
receive tensors from src_rank.
@ -201,7 +201,7 @@ class _Receive(PrimitiveWithInfer):
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.recv = P._Receive(st_tag=0, src_rank=0, shape=[2, 8], dtype=np.float32,
>>> self.recv = P.Receive(st_tag=0, src_rank=0, shape=[2, 8], dtype=np.float32,
>>> group="hccl_world_group")
>>>
>>> def construct(self, x):

View File

@ -53,3 +53,10 @@ def test_nccl_reduce_scatter_op():
def test_nccl_broadcast_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_broadcast_op.py")
assert return_code == 0
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single
def test_nccl_send_recv_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_send_recv_op.py")
assert return_code == 0

View File

@ -48,7 +48,7 @@ def test_AllGather():
for i in range(size - 1):
tmp = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 2)
expect = np.concatenate((expect, tmp))
diff = output.asnumpy() - expect
diff = np.absolute(output.asnumpy() - expect)
error = np.ones(shape=expect.shape) * 1.0e-5
assert np.all(diff < error)
assert output.shape == expect.shape

View File

@ -0,0 +1,69 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
init()
rank = get_rank()
size = get_group_size()
if size % 2 != 0:
raise RuntimeError("Group size should be divided by 2 exactly.")
x = np.ones([3, 3, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
class SendNet(nn.Cell):
def __init__(self):
super(SendNet, self).__init__()
self.x = Parameter(initializer(Tensor(x), x.shape), name='x')
self.depend = P.Depend()
self.send = P.Send(sr_tag=0, dest_rank=rank+size//2, group=NCCL_WORLD_COMM_GROUP)
def construct(self):
out = self.depend(self.x, self.send(self.x))
return out
class RecvNet(nn.Cell):
def __init__(self):
super(RecvNet, self).__init__()
self.recv = P.Receive(sr_tag=0, src_rank=rank-size//2, shape=[3, 3, 3, 3], dtype=mstype.float32,
group=NCCL_WORLD_COMM_GROUP)
def construct(self):
out = self.recv()
return out
def test_send_recv():
if rank < size / 2:
send_net = SendNet()
output = send_net()
else:
expect_output = np.ones([3, 3, 3, 3]).astype(np.float32) * 0.01 * (rank-size//2 + 1)
recv_net = RecvNet()
output = recv_net()
diff = abs(output.asnumpy() - expect_output)
error = np.ones(shape=output.shape) * 1.0e-5
assert np.all(diff < error)
assert expect_output.shape == output.shape