forked from mindspore-Ecosystem/mindspore
fix review opinions in doc/comments
This commit is contained in:
parent
0565e4641e
commit
d9f7e56b43
|
@ -276,7 +276,7 @@ def initializer(init, shape=None, dtype=mstype.float32):
|
|||
|
||||
shape (Union[tuple, list, int]): A list of integers, a tuple of integers or an integer as the shape of
|
||||
output. Default: None.
|
||||
dtype (:class:`mindspore.dtype`): The type of data in initialized tensor. Default: mstype.float32.
|
||||
dtype (:class:`mindspore.dtype`): The type of data in initialized tensor. Default: mindspore.float32.
|
||||
|
||||
Returns:
|
||||
Tensor, initialized tensor.
|
||||
|
|
|
@ -62,7 +62,7 @@ class ExpandDims(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
||||
>>> expand_dims = ExpandDims()
|
||||
>>> expand_dims = P.ExpandDims()
|
||||
>>> output = expand_dims(input_tensor, 0)
|
||||
"""
|
||||
|
||||
|
@ -101,7 +101,7 @@ class DType(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
||||
>>> type = DType()(input_tensor)
|
||||
>>> type = P.DType()(input_tensor)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -134,7 +134,7 @@ class SameTypeShape(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
||||
>>> out = SameTypeShape()(input_x, input_y)
|
||||
>>> out = P.SameTypeShape()(input_x, input_y)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -175,7 +175,7 @@ class Cast(PrimitiveWithInfer):
|
|||
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
||||
>>> input_x = Tensor(input_np)
|
||||
>>> type_dst = mindspore.int32
|
||||
>>> cast = Cast()
|
||||
>>> cast = P.Cast()
|
||||
>>> result = cast(input_x, type_dst)
|
||||
>>> expect = input_np.astype(type_dst)
|
||||
"""
|
||||
|
@ -227,7 +227,7 @@ class IsSubClass(PrimitiveWithInfer):
|
|||
bool, the check result.
|
||||
|
||||
Examples:
|
||||
>>> result = IsSubClass()(mindspore.int32, mindspore.intc)
|
||||
>>> result = P.IsSubClass()(mindspore.int32, mindspore.intc)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -262,7 +262,7 @@ class IsInstance(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> a = 1
|
||||
>>> result = IsInstance()(a, mindspore.int32)
|
||||
>>> result = P.IsInstance()(a, mindspore.int32)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -303,7 +303,7 @@ class Reshape(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
||||
>>> reshape = Reshape()
|
||||
>>> reshape = P.Reshape()
|
||||
>>> output = reshape(input_tensor, (3, 2))
|
||||
"""
|
||||
|
||||
|
@ -366,7 +366,7 @@ class Shape(Primitive):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
||||
>>> shape = Shape()
|
||||
>>> shape = P.Shape()
|
||||
>>> output = shape(input_tensor)
|
||||
"""
|
||||
|
||||
|
@ -398,7 +398,7 @@ class Squeeze(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
||||
>>> squeeze = Squeeze(2)
|
||||
>>> squeeze = P.Squeeze(2)
|
||||
>>> output = squeeze(input_tensor)
|
||||
"""
|
||||
|
||||
|
@ -450,7 +450,7 @@ class Transpose(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32)
|
||||
>>> perm = (0, 2, 1)
|
||||
>>> transpose = Transpose()
|
||||
>>> transpose = P.Transpose()
|
||||
>>> output = transpose(input_tensor, perm)
|
||||
"""
|
||||
|
||||
|
@ -504,10 +504,10 @@ class GatherV2(PrimitiveWithInfer):
|
|||
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
|
||||
|
||||
Examples:
|
||||
>>> params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32)
|
||||
>>> indices = Tensor(np.array([1, 2]), mindspore.int32)
|
||||
>>> input_params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32)
|
||||
>>> input_indices = Tensor(np.array([1, 2]), mindspore.int32)
|
||||
>>> axis = 1
|
||||
>>> out = GatherV2()(params, indices, axis)
|
||||
>>> out = P.GatherV2()(input_params, input_indices, axis)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -556,7 +556,7 @@ class Split(PrimitiveWithInfer):
|
|||
:math:`(y_1, y_2, ..., y_S)`.
|
||||
|
||||
Examples:
|
||||
>>> split = Split(1, 2)
|
||||
>>> split = P.Split(1, 2)
|
||||
>>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))
|
||||
>>> output = split(x)
|
||||
"""
|
||||
|
@ -606,7 +606,7 @@ class Rank(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
||||
>>> rank = Rank()
|
||||
>>> rank = P.Rank()
|
||||
>>> rank(input_tensor)
|
||||
"""
|
||||
|
||||
|
@ -640,7 +640,7 @@ class TruncatedNormal(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_shape = Tensor(np.array([1, 2, 3]))
|
||||
>>> truncated_normal = TruncatedNormal()
|
||||
>>> truncated_normal = P.TruncatedNormal()
|
||||
>>> output = truncated_normal(input_shape)
|
||||
"""
|
||||
|
||||
|
@ -681,7 +681,7 @@ class Size(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
||||
>>> size = Size()
|
||||
>>> size = P.Size()
|
||||
>>> output = size(input_tensor)
|
||||
"""
|
||||
|
||||
|
@ -826,7 +826,7 @@ class TupleToArray(PrimitiveWithInfer):
|
|||
Tensor, if the input tuple contain `N` numbers, then the output tensor shape is (N,).
|
||||
|
||||
Examples:
|
||||
>>> type = TupleToArray()((1,2,3))
|
||||
>>> type = P.TupleToArray()((1,2,3))
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -861,7 +861,7 @@ class ScalarToArray(PrimitiveWithInfer):
|
|||
Tensor. 0-D Tensor and the content is the input.
|
||||
|
||||
Examples:
|
||||
>>> op = ScalarToArray()
|
||||
>>> op = P.ScalarToArray()
|
||||
>>> data = 1.0
|
||||
>>> output = op(data)
|
||||
"""
|
||||
|
@ -893,7 +893,7 @@ class ScalarToTensor(PrimitiveWithInfer):
|
|||
Tensor. 0-D Tensor and the content is the input.
|
||||
|
||||
Examples:
|
||||
>>> op = ScalarToTensor()
|
||||
>>> op = P.ScalarToTensor()
|
||||
>>> data = 1
|
||||
>>> output = op(data, mindspore.float32)
|
||||
"""
|
||||
|
@ -934,7 +934,7 @@ class InvertPermutation(PrimitiveWithInfer):
|
|||
tuple[int]. the lenth is same as input.
|
||||
|
||||
Examples:
|
||||
>>> invert = InvertPermutation()
|
||||
>>> invert = P.InvertPermutation()
|
||||
>>> input_data = (3, 4, 0, 2, 1)
|
||||
>>> output = invert(input_data)
|
||||
>>> output == (2, 4, 3, 0, 1)
|
||||
|
@ -982,8 +982,8 @@ class Argmax(PrimitiveWithInfer):
|
|||
Tensor, indices of the max value of input tensor across the axis.
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.array([2.0, 3.1, 1.2]))
|
||||
>>> index = Argmax()(input)
|
||||
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]))
|
||||
>>> index = P.Argmax()(input_x)
|
||||
>>> assert index == Tensor(1, mindspore.int64)
|
||||
"""
|
||||
|
||||
|
@ -1030,8 +1030,8 @@ class Argmin(PrimitiveWithInfer):
|
|||
Tensor, indices of the min value of input tensor across the axis.
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.array([2.0, 3.1, 1.2]))
|
||||
>>> index = Argmin()(input)
|
||||
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]))
|
||||
>>> index = P.Argmin()(input_x)
|
||||
>>> assert index == Tensor(2, mindspore.int64)
|
||||
"""
|
||||
|
||||
|
@ -1082,8 +1082,8 @@ class ArgMaxWithValue(PrimitiveWithInfer):
|
|||
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.random.rand(5))
|
||||
>>> index, output = ArgMaxWithValue()(input)
|
||||
>>> input_x = Tensor(np.random.rand(5))
|
||||
>>> index, output = P.ArgMaxWithValue()(input_x)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1129,8 +1129,8 @@ class ArgMinWithValue(PrimitiveWithInfer):
|
|||
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.random.rand(5))
|
||||
>>> index, output = ArgMinWithValue()(input)
|
||||
>>> input_x = Tensor(np.random.rand(5))
|
||||
>>> index, output = P.ArgMinWithValue()(input_x)
|
||||
"""
|
||||
@prim_attr_register
|
||||
def __init__(self, axis=0, keep_dims=False):
|
||||
|
@ -1325,7 +1325,7 @@ class Concat(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> data1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
|
||||
>>> data2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
|
||||
>>> op = Concat()
|
||||
>>> op = P.Concat()
|
||||
>>> output = op((data1, data2))
|
||||
"""
|
||||
|
||||
|
@ -1607,7 +1607,7 @@ class Select(PrimitiveWithInfer):
|
|||
Tensor, has the same shape as input_y. The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
|
||||
|
||||
Examples:
|
||||
>>> select = Select()
|
||||
>>> select = P.Select()
|
||||
>>> input_x = Tensor([True, False])
|
||||
>>> input_y = Tensor([2,3], mindspore.float32)
|
||||
>>> input_z = Tensor([1,2], mindspore.float32)
|
||||
|
@ -1681,7 +1681,7 @@ class StridedSlice(PrimitiveWithInfer):
|
|||
Examples
|
||||
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]],
|
||||
>>> [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
|
||||
>>> slice = StridedSlice()
|
||||
>>> slice = P.StridedSlice()
|
||||
>>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1))
|
||||
>>> output.shape()
|
||||
(1, 1, 3)
|
||||
|
@ -1913,9 +1913,9 @@ class ScatterNd(PrimitiveWithInfer):
|
|||
Tensor, the new tensor, has the same type as `update` and the same shape as `shape`.
|
||||
|
||||
Examples:
|
||||
>>> op = ScatterNd()
|
||||
>>> update = Tensor(np.array([3.2, 1.1]), mindspore.float32)
|
||||
>>> op = P.ScatterNd()
|
||||
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32)
|
||||
>>> update = Tensor(np.array([3.2, 1.1]), mindspore.float32)
|
||||
>>> shape = (3, 3)
|
||||
>>> output = op(indices, update, shape)
|
||||
"""
|
||||
|
@ -1964,7 +1964,7 @@ class ResizeNearestNeighbor(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
||||
>>> resize = ResizeNearestNeighbor((2, 2))
|
||||
>>> resize = P.ResizeNearestNeighbor((2, 2))
|
||||
>>> output = resize(input_tensor)
|
||||
"""
|
||||
|
||||
|
@ -1997,7 +1997,7 @@ class GatherNd(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
||||
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
|
||||
>>> op = GatherNd()
|
||||
>>> op = P.GatherNd()
|
||||
>>> output = op(input_x, indices)
|
||||
"""
|
||||
|
||||
|
@ -2039,7 +2039,7 @@ class ScatterNdUpdate(PrimitiveWithInfer):
|
|||
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
||||
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
|
||||
>>> update = Tensor(np.array([1.0, 2.2]), mindspore.float32)
|
||||
>>> op = ScatterNdUpdate()
|
||||
>>> op = P.ScatterNdUpdate()
|
||||
>>> output = op(input_x, indices, update)
|
||||
"""
|
||||
|
||||
|
@ -2090,7 +2090,7 @@ class SpaceToDepth(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> x = Tensor(np.random.rand(1,3,2,2), mindspore.float32)
|
||||
>>> block_size = 2
|
||||
>>> op = SpaceToDepth(block_size)
|
||||
>>> op = P.SpaceToDepth(block_size)
|
||||
>>> output = op(x)
|
||||
>>> output.asnumpy().shape == (1,12,1,1)
|
||||
"""
|
||||
|
@ -2148,7 +2148,7 @@ class DepthToSpace(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> x = Tensor(np.random.rand(1,12,1,1), mindspore.float32)
|
||||
>>> block_size = 2
|
||||
>>> op = DepthToSpace(block_size)
|
||||
>>> op = P.DepthToSpace(block_size)
|
||||
>>> output = op(x)
|
||||
>>> output.asnumpy().shape == (1,3,2,2)
|
||||
"""
|
||||
|
@ -2212,8 +2212,8 @@ class SpaceToBatch(PrimitiveWithInfer):
|
|||
>>> block_size = 2
|
||||
>>> paddings = [[0, 0], [0, 0]]
|
||||
>>> space_to_batch = P.SpaceToBatch(block_size, paddings)
|
||||
>>> x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
|
||||
>>> space_to_batch(x)
|
||||
>>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
|
||||
>>> space_to_batch(input_x)
|
||||
[[[[1.]]], [[[2.]]], [[[3.]]], [[[4.]]]]
|
||||
|
||||
"""
|
||||
|
@ -2280,8 +2280,8 @@ class BatchToSpace(PrimitiveWithInfer):
|
|||
>>> block_size = 2
|
||||
>>> crops = [[0, 0], [0, 0]]
|
||||
>>> op = P.BatchToSpace(block_size, crops)
|
||||
>>> x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
|
||||
>>> output = op(x)
|
||||
>>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
|
||||
>>> output = op(input_x)
|
||||
[[[[1., 2.], [3., 4.]]]]
|
||||
|
||||
"""
|
||||
|
|
|
@ -112,9 +112,9 @@ class TensorAdd(_MathBinaryOp):
|
|||
|
||||
Examples:
|
||||
>>> add = P.TensorAdd()
|
||||
>>> x = Tensor(np.array([1,2,3]).astype(np.float32))
|
||||
>>> y = Tensor(np.array([4,5,6]).astype(np.float32))
|
||||
>>> add(x, y)
|
||||
>>> input_x = Tensor(np.array([1,2,3]).astype(np.float32))
|
||||
>>> input_y = Tensor(np.array([4,5,6]).astype(np.float32))
|
||||
>>> add(input_x, input_y)
|
||||
[5,7,9]
|
||||
"""
|
||||
|
||||
|
@ -124,23 +124,24 @@ class AssignAdd(PrimitiveWithInfer):
|
|||
Updates a `Parameter` by adding a value to it.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Parameter) - The `Parameter`.
|
||||
- **input_y** (Union[scalar, Tensor]) - Has the same shape as `input_x`.
|
||||
- **variable** (Parameter) - The `Parameter`.
|
||||
- **value** (Union[numbers.Number, Tensor]) - The value to be added to the `variable`.
|
||||
It should have the same shape as `variable` if it is a Tensor.
|
||||
|
||||
Examples:
|
||||
>>> class Net(Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.AssignAdd = P.AssignAdd()
|
||||
>>> self.inputdata = Parameter(initializer(1, [1], mindspore.int64), name="global_step")
|
||||
>>> self.variable = Parameter(initializer(1, [1], mindspore.int64), name="global_step")
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> self.AssignAdd(self.inputdata, x)
|
||||
>>> return self.inputdata
|
||||
>>> self.AssignAdd(self.variable, x)
|
||||
>>> return self.variable
|
||||
>>>
|
||||
>>> net = Net()
|
||||
>>> x = Tensor(np.ones([1]).astype(np.int64)*100)
|
||||
>>> net(x)
|
||||
>>> value = Tensor(np.ones([1]).astype(np.int64)*100)
|
||||
>>> net(value)
|
||||
"""
|
||||
__mindspore_signature__ = (
|
||||
('variable', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD),
|
||||
|
@ -166,22 +167,24 @@ class AssignSub(PrimitiveWithInfer):
|
|||
Updates a `Parameter` by subtracting a value from it.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Parameter) - The `Parameter`.
|
||||
- **input_y** (Union[scalar, Tensor]) - Has the same shape as `input_x`.
|
||||
- **variable** (Parameter) - The `Parameter`.
|
||||
- **value** (Union[numbers.Number, Tensor]) - The value to be subtracted from the `variable`.
|
||||
It should have the same shape as `variable` if it is a Tensor.
|
||||
|
||||
Examples:
|
||||
>>> class Net(Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.AssignSub = P.AssignSub()
|
||||
>>> self.inputdata = Parameter(initializer(1, [1], mindspore.int64), name="global_step")
|
||||
>>> self.variable = Parameter(initializer(1, [1], mindspore.int64), name="global_step")
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> self.AssignSub(self.inputdata, x)
|
||||
>>> return self.inputdata
|
||||
>>> self.AssignSub(self.variable, x)
|
||||
>>> return self.variable
|
||||
>>>
|
||||
>>> net = Net()
|
||||
>>> x = Tensor(np.ones([1]).astype(np.int64)*100)
|
||||
>>> net(x)
|
||||
>>> value = Tensor(np.ones([1]).astype(np.int64)*100)
|
||||
>>> net(value)
|
||||
"""
|
||||
|
||||
__mindspore_signature__ = (
|
||||
|
@ -263,9 +266,9 @@ class ReduceMean(_Reduce):
|
|||
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
|
||||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = P.ReduceMean(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
>>> output = op(input_x, 1)
|
||||
"""
|
||||
|
||||
|
||||
|
@ -295,9 +298,9 @@ class ReduceSum(_Reduce):
|
|||
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
|
||||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = P.ReduceSum(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
>>> output = op(input_x, 1)
|
||||
"""
|
||||
|
||||
|
||||
|
@ -328,9 +331,9 @@ class ReduceAll(_Reduce):
|
|||
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
|
||||
|
||||
Examples:
|
||||
>>> data = Tensor(np.array([[True, False], [True, True]]))
|
||||
>>> input_x = Tensor(np.array([[True, False], [True, True]]))
|
||||
>>> op = P.ReduceAll(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
>>> output = op(input_x, 1)
|
||||
"""
|
||||
|
||||
def __infer__(self, input_x, axis):
|
||||
|
@ -364,9 +367,9 @@ class ReduceMax(_Reduce):
|
|||
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
|
||||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = P.ReduceMax(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
>>> output = op(input_x, 1)
|
||||
"""
|
||||
|
||||
|
||||
|
@ -397,9 +400,9 @@ class ReduceMin(_Reduce):
|
|||
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
|
||||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = P.ReduceMin(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
>>> output = op(input_x, 1)
|
||||
"""
|
||||
|
||||
|
||||
|
@ -429,9 +432,9 @@ class ReduceProd(_Reduce):
|
|||
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
|
||||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = P.ReduceProd(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
>>> output = op(input_x, 1)
|
||||
"""
|
||||
|
||||
|
||||
|
@ -451,15 +454,15 @@ class CumProd(PrimitiveWithInfer):
|
|||
Tensor, has the same shape and dtype as the 'input_x'.
|
||||
|
||||
Examples:
|
||||
>>> data = Tensor(np.array([a, b, c]).astype(np.float32))
|
||||
>>> input_x = Tensor(np.array([a, b, c]).astype(np.float32))
|
||||
>>> op0 = P.CumProd()
|
||||
>>> output = op0(data, 0) # output=[a, a * b, a * b * c]
|
||||
>>> output = op0(input_x, 0) # output=[a, a * b, a * b * c]
|
||||
>>> op1 = P.CumProd(exclusive=True)
|
||||
>>> output = op1(data, 0) # output=[1, a, a * b]
|
||||
>>> output = op1(input_x, 0) # output=[1, a, a * b]
|
||||
>>> op2 = P.CumProd(reverse=True)
|
||||
>>> output = op2(data, 0) # output=[a * b * c, b * c, c]
|
||||
>>> output = op2(input_x, 0) # output=[a * b * c, b * c, c]
|
||||
>>> op3 = P.CumProd(exclusive=True, reverse=True)
|
||||
>>> output = op3(data, 0) # output=[b * c, c, 1]
|
||||
>>> output = op3(input_x, 0) # output=[b * c, c, 1]
|
||||
"""
|
||||
@prim_attr_register
|
||||
def __init__(self, exclusive=False, reverse=False):
|
||||
|
@ -1190,7 +1193,7 @@ class FloorMod(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
|
||||
>>> floor_mod = FloorMod()
|
||||
>>> floor_mod = P.FloorMod()
|
||||
>>> floor_mod(input_x, input_y)
|
||||
[2, 1, 2]
|
||||
"""
|
||||
|
@ -1207,9 +1210,9 @@ class Acosh(PrimitiveWithInfer):
|
|||
Tensor, has the same shape as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> acosh = Acosh()
|
||||
>>> X = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
|
||||
>>> output = acosh(X)
|
||||
>>> acosh = P.Acosh()
|
||||
>>> input_x = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
|
||||
>>> output = acosh(input_x)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1286,7 +1289,7 @@ class EqualCount(PrimitiveWithInfer):
|
|||
- **input_y** (Tensor) - The second input tensor.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape as the `input_x`.
|
||||
Tensor, with the type as `mindspore.int32` and size as (1,).
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
|
@ -1324,7 +1327,7 @@ class NotEqual(_LogicBinaryOp):
|
|||
Inputs:
|
||||
- **input_x** (Union[Tensor, Number, bool]) - The first input is a tensor whose data type is number or bool, or
|
||||
a number or a bool object.
|
||||
- **input_y** (Union[Tensor, Number, bool]) - The second input tensor whose data type is same as 'input_x' or
|
||||
- **input_y** (Union[Tensor, Number, bool]) - The second input tensor whose data type is same as `input_x` or
|
||||
a number or a bool object.
|
||||
|
||||
Outputs:
|
||||
|
@ -1359,11 +1362,11 @@ class Greater(_LogicBinaryOp):
|
|||
|
||||
Inputs:
|
||||
- **input_x** (Union[Tensor, Number]) - The first input is a tensor whose data type is number or a number.
|
||||
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as 'input_x' or
|
||||
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as `input_x` or
|
||||
a number.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape is same as the shape after broadcasting, and the data type is same as 'input_x'.
|
||||
Tensor, the shape is same as the shape after broadcasting, and the data type is bool.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
|
@ -1386,11 +1389,11 @@ class GreaterEqual(_LogicBinaryOp):
|
|||
|
||||
Inputs:
|
||||
- **input_x** (Union[Tensor, Number]) - The first input is a tensor whose data type is number or a number.
|
||||
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as 'input_x' or
|
||||
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as `input_x` or
|
||||
a number.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape is same as the shape after broadcasting, and the data type is bool'.
|
||||
Tensor, the shape is same as the shape after broadcasting, and the data type is bool.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
|
@ -1413,7 +1416,7 @@ class Less(_LogicBinaryOp):
|
|||
|
||||
Inputs:
|
||||
- **input_x** (Union[Tensor, Number]) - The first input is a tensor whose data type is number or a number.
|
||||
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as 'input_x' or
|
||||
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as `input_x` or
|
||||
a number.
|
||||
|
||||
Outputs:
|
||||
|
@ -1440,7 +1443,7 @@ class LessEqual(_LogicBinaryOp):
|
|||
|
||||
Inputs:
|
||||
- **input_x** (Union[Tensor, Number]) - The first input is a tensor whose data type is number or a number.
|
||||
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as 'input_x' or
|
||||
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as `input_x` or
|
||||
a number.
|
||||
|
||||
Outputs:
|
||||
|
@ -1752,8 +1755,8 @@ class Cos(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> cos = P.Cos()
|
||||
>>> X = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
|
||||
>>> output = cos(X)
|
||||
>>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
|
||||
>>> output = cos(input_x)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1780,8 +1783,8 @@ class ACos(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> acos = P.ACos()
|
||||
>>> X = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
|
||||
>>> output = acos(X)
|
||||
>>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
|
||||
>>> output = acos(input_x)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1993,7 +1996,7 @@ class Atan2(_MathBinaryOp):
|
|||
- **input_y** (Tensor) - The input tensor.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape is same as the shape after broadcasting, and the data type is same as 'input_x'.
|
||||
Tensor, the shape is same as the shape after broadcasting, and the data type is same as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[0, 1]]), mindspore.float32)
|
||||
|
|
|
@ -41,7 +41,7 @@ class Flatten(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
|
||||
>>> flatten = Flatten()
|
||||
>>> flatten = P.Flatten()
|
||||
>>> output = flatten(input_tensor)
|
||||
>>> assert output.shape() == (1, 24)
|
||||
"""
|
||||
|
@ -155,7 +155,7 @@ class ReLU(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]], np.float32))
|
||||
>>> relu = ReLU()
|
||||
>>> relu = P.ReLU()
|
||||
>>> result = relu(input_x)
|
||||
[[0, 4.0, 0.0], [2.0, 0.0, 9.0]]
|
||||
"""
|
||||
|
@ -188,7 +188,7 @@ class ReLU6(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]], np.float32))
|
||||
>>> relu6 = ReLU6()
|
||||
>>> relu6 = P.ReLU6()
|
||||
>>> result = relu6(input_x)
|
||||
"""
|
||||
|
||||
|
@ -222,10 +222,10 @@ class Elu(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]], np.float32))
|
||||
>>> elu = Elu()
|
||||
>>> elu = P.Elu()
|
||||
>>> result = elu(input_x)
|
||||
Tensor([[-0.632 4.0 -0.999]
|
||||
[2.0 -0.993 9.0 ]], shape=(2, 3), dtype=ms.float32)
|
||||
[2.0 -0.993 9.0 ]], shape=(2, 3), dtype=mindspore.float32)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1082,7 +1082,7 @@ class TopK(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> topk = P.TopK(sorted=True)
|
||||
>>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16))
|
||||
>>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16)
|
||||
>>> k = 3
|
||||
>>> values, indices = topk(input_x, k)
|
||||
>>> assert values == Tensor(np.array([5, 4, 3]))
|
||||
|
@ -1223,8 +1223,8 @@ class ApplyMomentum(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> net = ResNet50()
|
||||
>>> loss = SoftmaxCrossEntropyWithLogits()
|
||||
>>> opt = ApplyMomentum(Tensor(np.array([0.001])), Tensor(np.array([0.9])),
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> opt = P.ApplyMomentum(Tensor(np.array([0.001])), Tensor(np.array([0.9])),
|
||||
filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
>>> model = Model(net, loss, opt)
|
||||
"""
|
||||
|
@ -1351,6 +1351,7 @@ class SGD(PrimitiveWithInfer):
|
|||
class ApplyRMSProp(PrimitiveWithInfer):
|
||||
"""
|
||||
Optimizer that implements the Root Mean Square prop(RMSProp) algorithm.
|
||||
Please refer to the usage in source code of `nn.RMSProp`.
|
||||
|
||||
Note:
|
||||
Update `var` according to the RMSProp algorithm.
|
||||
|
@ -1386,12 +1387,6 @@ class ApplyRMSProp(PrimitiveWithInfer):
|
|||
|
||||
Outputs:
|
||||
Tensor, parameters to be update.
|
||||
|
||||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> opt = RMSProp(params=net.trainable_params(), learning_rate=learning_rate)
|
||||
>>> model = Model(net, loss, opt)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1424,6 +1419,7 @@ class ApplyRMSProp(PrimitiveWithInfer):
|
|||
class ApplyCenteredRMSProp(PrimitiveWithInfer):
|
||||
"""
|
||||
Optimizer that implements the centered RMSProp algorithm.
|
||||
Please refer to the usage in source code of `nn.RMSProp`.
|
||||
|
||||
Note:
|
||||
Update `var` according to the centered RMSProp algorithm.
|
||||
|
@ -1464,12 +1460,6 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer):
|
|||
|
||||
Outputs:
|
||||
Tensor, parameters to be update.
|
||||
|
||||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> opt = RMSProp(params=net.trainable_params(), learning_rate=learning_rate, centered=True)
|
||||
>>> model = Model(net, loss, opt)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1596,7 +1586,7 @@ class DropoutGenMask(Primitive):
|
|||
Tensor, the value of generated mask for input shape.
|
||||
|
||||
Examples:
|
||||
>>> dropout_gen_mask = DropoutGenMask()
|
||||
>>> dropout_gen_mask = P.DropoutGenMask()
|
||||
>>> shape = (20, 16, 50)
|
||||
>>> keep_prob = Tensor(0.5, mindspore.float32)
|
||||
>>> mask = dropout_gen_mask(shape, keep_prob)
|
||||
|
@ -1631,8 +1621,8 @@ class DropoutDoMask(PrimitiveWithInfer):
|
|||
>>> x = Tensor(np.ones([20, 16, 50]), mindspore.float32)
|
||||
>>> shape = (20, 16, 50)
|
||||
>>> keep_prob = Tensor(0.5, mindspore.float32)
|
||||
>>> dropout_gen_mask = DropoutGenMask()
|
||||
>>> dropout_do_mask = DropoutDoMask()
|
||||
>>> dropout_gen_mask = P.DropoutGenMask()
|
||||
>>> dropout_do_mask = P.DropoutDoMask()
|
||||
>>> mask = dropout_gen_mask(shape, keep_prob)
|
||||
>>> output = dropout_do_mask(x, mask, keep_prob)
|
||||
>>> assert output.shape() == (20, 16, 50)
|
||||
|
@ -1737,7 +1727,7 @@ class OneHot(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32)
|
||||
>>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32)
|
||||
>>> onehot = OneHot()
|
||||
>>> onehot = P.OneHot()
|
||||
>>> result = onehot(indices, depth, on_value, off_value)
|
||||
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
|
||||
"""
|
||||
|
@ -1793,7 +1783,7 @@ class Gelu(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
|
||||
>>> gelu = Gelu()
|
||||
>>> gelu = P.Gelu()
|
||||
>>> result = gelu(tensor)
|
||||
"""
|
||||
|
||||
|
@ -1834,7 +1824,7 @@ class GetNext(PrimitiveWithInfer):
|
|||
and the type is described is `types`.
|
||||
|
||||
Examples:
|
||||
>>> get_next = GetNext([mindspore.float32, mindspore.int32], [[32, 1, 28, 28], [10]], 'shared_name')
|
||||
>>> get_next = P.GetNext([mindspore.float32, mindspore.int32], [[32, 1, 28, 28], [10]], 'shared_name')
|
||||
>>> feature, label = get_next()
|
||||
"""
|
||||
|
||||
|
@ -2015,7 +2005,7 @@ class Pad(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
||||
>>> pad_op = Pad(((1, 2), (2, 1)))
|
||||
>>> pad_op = P.Pad(((1, 2), (2, 1)))
|
||||
>>> output_tensor = pad_op(input_tensor)
|
||||
>>> assert output_tensor == Tensor(np.array([[ 0. , 0. , 0. , 0. , 0. , 0. ],
|
||||
>>> [ 0. , 0. , -0.1, 0.3, 3.6, 0. ],
|
||||
|
|
|
@ -406,7 +406,7 @@ def export(net, *inputs, file_name, file_format='GEIR'):
|
|||
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'LITE' format for exported model.
|
||||
|
||||
- GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of
|
||||
Ascend model.
|
||||
Ascend model.
|
||||
- ONNX: Open Neural Network eXchange. An open format built to represent machine learning models.
|
||||
- LITE: Huawei model format for mobile.
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue