add scatter_nd_add and scatter_nd_sub op for gpu

This commit is contained in:
xcnick 2021-06-27 11:36:36 +08:00
parent 00dee4e3bd
commit d8d906df3a
9 changed files with 823 additions and 401 deletions

View File

@ -0,0 +1,363 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/arrays/scatter_nd_functor_gpu_kernel.h"
namespace mindspore {
namespace kernel {
// ScatterNdUpdate
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
ScatterNdFunctorKernel, double, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
ScatterNdFunctorKernel, double, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ScatterNdFunctorKernel, float, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ScatterNdFunctorKernel, float, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ScatterNdFunctorKernel, half, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ScatterNdFunctorKernel, half, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
ScatterNdFunctorKernel, int, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
ScatterNdFunctorKernel, int, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
ScatterNdFunctorKernel, int16_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
ScatterNdFunctorKernel, int16_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
ScatterNdFunctorKernel, uint8_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
ScatterNdFunctorKernel, uint8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
ScatterNdFunctorKernel, int8_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
ScatterNdFunctorKernel, int8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeBool)
.AddOutputAttr(kNumberTypeBool),
ScatterNdFunctorKernel, bool, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeBool)
.AddOutputAttr(kNumberTypeBool),
ScatterNdFunctorKernel, bool, int64_t)
// ScatterNdAdd
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
ScatterNdFunctorKernel, double, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
ScatterNdFunctorKernel, double, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ScatterNdFunctorKernel, float, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ScatterNdFunctorKernel, float, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ScatterNdFunctorKernel, half, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ScatterNdFunctorKernel, half, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
ScatterNdFunctorKernel, int, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
ScatterNdFunctorKernel, int, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
ScatterNdFunctorKernel, int16_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
ScatterNdFunctorKernel, int16_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
ScatterNdFunctorKernel, uint8_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
ScatterNdFunctorKernel, uint8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
ScatterNdFunctorKernel, int8_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
ScatterNdFunctorKernel, int8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeBool)
.AddOutputAttr(kNumberTypeBool),
ScatterNdFunctorKernel, bool, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdAdd,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeBool)
.AddOutputAttr(kNumberTypeBool),
ScatterNdFunctorKernel, bool, int64_t)
// ScatterNdSub
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
ScatterNdFunctorKernel, double, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
ScatterNdFunctorKernel, double, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ScatterNdFunctorKernel, float, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ScatterNdFunctorKernel, float, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ScatterNdFunctorKernel, half, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ScatterNdFunctorKernel, half, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
ScatterNdFunctorKernel, int, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
ScatterNdFunctorKernel, int, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
ScatterNdFunctorKernel, int16_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
ScatterNdFunctorKernel, int16_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
ScatterNdFunctorKernel, uint8_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
ScatterNdFunctorKernel, uint8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
ScatterNdFunctorKernel, int8_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
ScatterNdFunctorKernel, int8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeBool)
.AddOutputAttr(kNumberTypeBool),
ScatterNdFunctorKernel, bool, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdSub,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeBool)
.AddOutputAttr(kNumberTypeBool),
ScatterNdFunctorKernel, bool, int64_t)
} // namespace kernel
} // namespace mindspore

View File

@ -14,21 +14,30 @@
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ND_UPDATE_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ND_UPDATE_GPU_KERNEL_H_
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ND_FUNCTOR_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ND_FUNCTOR_GPU_KERNEL_H_
#include <vector>
#include <string>
#include <map>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/scatter_nd_update_impl.cuh"
#include "backend/kernel_compiler/gpu/cuda_impl/scatter_nd_functor_impl.cuh"
namespace mindspore {
namespace kernel {
static const std::map<std::string, ScatterNdFunctorType> kScatterNdFunctorTypeMap = {
{"ScatterNdUpdate", SCATTER_ND_FUNC_UPDATE},
{"ScatterNdAdd", SCATTER_ND_FUNC_ADD},
{"ScatterNdSub", SCATTER_ND_FUNC_SUB},
};
template <typename T, typename S>
class ScatterNdUpdateKernel : public GpuKernel {
class ScatterNdFunctorKernel : public GpuKernel {
public:
ScatterNdUpdateKernel() { ResetResource(); }
~ScatterNdUpdateKernel() {
ScatterNdFunctorKernel() { ResetResource(); }
~ScatterNdFunctorKernel() {
if (indices_stride_ != nullptr) {
device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(static_cast<void *>(indices_stride_));
}
@ -54,9 +63,9 @@ class ScatterNdUpdateKernel : public GpuKernel {
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(indices_stride_, &out_strides_[0], indices_len, cudaMemcpyHostToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync failed in ScatterNdUpdateGpuFwdKernel::Launch.");
CalScatterNdUpdate(unit_size_, num_units_, index_depth_, indices_stride_, indices, updates, input,
reinterpret_cast<cudaStream_t>(stream_ptr));
"cudaMemcpyAsync failed in ScatterNdFunctorGpuFwdKernel::Launch.");
CalScatterNdFunctor(scatter_nd_functor_type_, unit_size_, num_units_, index_depth_, indices_stride_, indices,
updates, input, reinterpret_cast<cudaStream_t>(stream_ptr));
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(&output[0], &input[0], input_size_ * sizeof(T), cudaMemcpyDeviceToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
@ -65,15 +74,22 @@ class ScatterNdUpdateKernel : public GpuKernel {
}
bool Init(const CNodePtr &kernel_node) override {
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
auto iter = kScatterNdFunctorTypeMap.find(kernel_name);
if (iter == kScatterNdFunctorTypeMap.end()) {
MS_LOG(EXCEPTION) << "ScatterNd functor " << kernel_name << " is not supported.";
} else {
scatter_nd_functor_type_ = iter->second;
}
kernel_node_ = kernel_node;
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 3) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but ScatterNdUpdate needs 3 inputs.";
MS_LOG(ERROR) << "Input number is " << input_num << ", but " << kernel_name << " needs 3 inputs.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but ScatterNdUpdate has 1 output.";
MS_LOG(ERROR) << "Output number is " << output_num << ", but " << kernel_name << " has 1 output.";
return false;
}
@ -151,6 +167,7 @@ class ScatterNdUpdateKernel : public GpuKernel {
}
private:
ScatterNdFunctorType scatter_nd_functor_type_;
size_t input_size_;
size_t indices_size_;
size_t updates_size_;
@ -167,4 +184,4 @@ class ScatterNdUpdateKernel : public GpuKernel {
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ND_UPDATE_GPU_KERNEL_H_
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ND_FUNCTOR_GPU_KERNEL_H_

View File

@ -1,134 +0,0 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/arrays/scatter_nd_update_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
ScatterNdUpdateKernel, double, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
ScatterNdUpdateKernel, double, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ScatterNdUpdateKernel, float, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ScatterNdUpdateKernel, float, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ScatterNdUpdateKernel, half, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ScatterNdUpdateKernel, half, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
ScatterNdUpdateKernel, int, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
ScatterNdUpdateKernel, int, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
ScatterNdUpdateKernel, int16_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
ScatterNdUpdateKernel, int16_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
ScatterNdUpdateKernel, uint8_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
ScatterNdUpdateKernel, uint8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
ScatterNdUpdateKernel, int8_t, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
ScatterNdUpdateKernel, int8_t, int64_t)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeBool)
.AddOutputAttr(kNumberTypeBool),
ScatterNdUpdateKernel, bool, int)
MS_REG_GPU_KERNEL_TWO(ScatterNdUpdate,
KernelAttr()
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeBool)
.AddOutputAttr(kNumberTypeBool),
ScatterNdUpdateKernel, bool, int64_t)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,181 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/cuda_impl/util.cuh"
#include "backend/kernel_compiler/gpu/cuda_impl/scatter_nd_functor_impl.cuh"
template <typename T, typename S>
__global__ void ScatterNdUpdate(const size_t unit_size, const size_t index_depth, const size_t updates_size,
const S *out_strides, const S *indices, const T *updates, T *input) {
int i, j;
for (size_t read_index = blockIdx.x * blockDim.x + threadIdx.x; read_index < (updates_size);
read_index += blockDim.x * gridDim.x) {
size_t write_index = 0;
bool out_bound = false;
i = read_index / unit_size;
j = read_index % unit_size;
for (size_t k = 0; k < index_depth; k++) {
S indices_i = indices[i * index_depth + k];
out_bound |= indices_i < 0;
write_index += indices_i * out_strides[k] * unit_size;
}
write_index += j;
if (!out_bound) {
input[write_index] = updates[read_index];
}
}
}
template <typename T, typename S>
__global__ void ScatterNdAdd(const size_t unit_size, const size_t index_depth, const size_t updates_size,
const S *out_strides, const S *indices, const T *updates, T *input) {
int i, j;
for (size_t read_index = blockIdx.x * blockDim.x + threadIdx.x; read_index < (updates_size);
read_index += blockDim.x * gridDim.x) {
size_t write_index = 0;
bool out_bound = false;
i = read_index / unit_size;
j = read_index % unit_size;
for (size_t k = 0; k < index_depth; k++) {
S indices_i = indices[i * index_depth + k];
out_bound |= indices_i < 0;
write_index += indices_i * out_strides[k] * unit_size;
}
write_index += j;
if (!out_bound) {
MsAtomicAdd(&input[write_index], updates[read_index]);
}
}
}
template <typename T, typename S>
__global__ void ScatterNdSub(const size_t unit_size, const size_t index_depth, const size_t updates_size,
const S *out_strides, const S *indices, const T *updates, T *input) {
int i, j;
for (size_t read_index = blockIdx.x * blockDim.x + threadIdx.x; read_index < (updates_size);
read_index += blockDim.x * gridDim.x) {
size_t write_index = 0;
bool out_bound = false;
i = read_index / unit_size;
j = read_index % unit_size;
for (size_t k = 0; k < index_depth; k++) {
S indices_i = indices[i * index_depth + k];
out_bound |= indices_i < 0;
write_index += indices_i * out_strides[k] * unit_size;
}
write_index += j;
if (!out_bound) {
MsAtomicAdd(&input[write_index], -updates[read_index]);
}
}
}
template <typename T, typename S>
void CalScatterNdFunctor(enum ScatterNdFunctorType func_type, const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const S *out_strides, const S *indices, const T *updates, T *input,
cudaStream_t cuda_stream) {
const size_t updates_size = unit_size * num_units;
switch (func_type) {
case SCATTER_ND_FUNC_UPDATE:
return ScatterNdUpdate<<<GET_BLOCKS(updates_size), GET_THREADS, 0, cuda_stream>>>(
unit_size, index_depth, updates_size, out_strides, indices, updates, input);
case SCATTER_ND_FUNC_ADD:
return ScatterNdAdd<<<GET_BLOCKS(updates_size), GET_THREADS, 0, cuda_stream>>>(
unit_size, index_depth, updates_size, out_strides, indices, updates, input);
case SCATTER_ND_FUNC_SUB:
return ScatterNdSub<<<GET_BLOCKS(updates_size), GET_THREADS, 0, cuda_stream>>>(
unit_size, index_depth, updates_size, out_strides, indices, updates, input);
default:
break;
}
}
template void CalScatterNdFunctor<double, int64_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int64_t *out_strides, const int64_t *indices,
const double *updates, double *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<double, int32_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int32_t *out_strides, const int32_t *indices,
const double *updates, double *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<float, int64_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int64_t *out_strides, const int64_t *indices,
const float *updates, float *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<float, int32_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int32_t *out_strides, const int32_t *indices,
const float *updates, float *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<half, int64_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int64_t *out_strides, const int64_t *indices,
const half *updates, half *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<half, int32_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int32_t *out_strides, const int32_t *indices,
const half *updates, half *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<int32_t, int64_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int64_t *out_strides, const int64_t *indices,
const int32_t *updates, int32_t *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<int32_t, int32_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int32_t *out_strides, const int32_t *indices,
const int32_t *updates, int32_t *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<int16_t, int64_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int64_t *out_strides, const int64_t *indices,
const int16_t *updates, int16_t *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<int16_t, int32_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int32_t *out_strides, const int32_t *indices,
const int16_t *updates, int16_t *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<uint8_t, int64_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int64_t *out_strides, const int64_t *indices,
const uint8_t *updates, uint8_t *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<uint8_t, int32_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int32_t *out_strides, const int32_t *indices,
const uint8_t *updates, uint8_t *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<int8_t, int64_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int64_t *out_strides, const int64_t *indices,
const int8_t *updates, int8_t *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<int8_t, int32_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int32_t *out_strides, const int32_t *indices,
const int8_t *updates, int8_t *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<bool, int64_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int64_t *out_strides, const int64_t *indices,
const bool *updates, bool *input, cudaStream_t cuda_stream);
template void CalScatterNdFunctor<bool, int32_t>(enum ScatterNdFunctorType func_type, const size_t &unit_size,
const size_t &num_units, const size_t &index_depth,
const int32_t *out_strides, const int32_t *indices,
const bool *updates, bool *input, cudaStream_t cuda_stream);

View File

@ -14,13 +14,21 @@
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ND_UPDATE_IMPL_CUH_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ND_UPDATE_IMPL_CUH_
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ND_FUNCTOR_IMPL_CUH_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ND_FUNCTOR_IMPL_CUH_
#include "runtime/device/gpu/cuda_common.h"
template <typename T, typename S>
void CalScatterNdUpdate(const size_t &unit_size, const size_t &num_units, const size_t &index_depth,
const S *out_strides, const S *indices, const T *updates, T *input, cudaStream_t cuda_stream);
enum ScatterNdFunctorType {
SCATTER_ND_FUNC_UPDATE = 0,
SCATTER_ND_FUNC_ADD,
SCATTER_ND_FUNC_SUB,
SCATTER_ND_FUNC_INVALID_TYPE = 255
};
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ND_UPDATE_IMPL_CUH_
template <typename T, typename S>
void CalScatterNdFunctor(enum ScatterNdFunctorType func_type, const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const S *out_strides, const S *indices, const T *updates, T *input,
cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ND_FUNCTOR_IMPL_CUH_

View File

@ -1,116 +0,0 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/cuda_impl/scatter_nd_update_impl.cuh"
template <typename T, typename S>
__global__ void ScatterNdUpdate(const size_t unit_size, const size_t index_depth, const size_t updates_size,
const S *out_strides, const S *indices, const T *updates, T *input) {
int i, j;
for (size_t read_index = blockIdx.x * blockDim.x + threadIdx.x; read_index < (updates_size);
read_index += blockDim.x * gridDim.x) {
size_t write_index = 0;
bool out_bound = false;
i = read_index / unit_size;
j = read_index % unit_size;
for (size_t k = 0; k < index_depth; k++) {
S indices_i = indices[i * index_depth + k];
out_bound |= indices_i < 0;
write_index += indices_i * out_strides[k] * unit_size;
}
write_index += j;
if (!out_bound) {
input[write_index] = updates[read_index];
}
}
}
template <typename T, typename S>
void CalScatterNdUpdate(const size_t &unit_size, const size_t &num_units, const size_t &index_depth,
const S *out_strides, const S *indices, const T *updates, T *input, cudaStream_t cuda_stream) {
const size_t updates_size = unit_size * num_units;
ScatterNdUpdate<<<GET_BLOCKS(updates_size), GET_THREADS, 0, cuda_stream>>>(unit_size, index_depth, updates_size,
out_strides, indices, updates, input);
}
template void CalScatterNdUpdate<double, int64_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int64_t *out_strides,
const int64_t *indices, const double *updates, double *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<double, int32_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int32_t *out_strides,
const int32_t *indices, const double *updates, double *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<float, int64_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int64_t *out_strides,
const int64_t *indices, const float *updates, float *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<float, int32_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int32_t *out_strides,
const int32_t *indices, const float *updates, float *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<half, int64_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int64_t *out_strides,
const int64_t *indices, const half *updates, half *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<half, int32_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int32_t *out_strides,
const int32_t *indices, const half *updates, half *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<int32_t, int64_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int64_t *out_strides,
const int64_t *indices, const int32_t *updates, int32_t *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<int32_t, int32_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int32_t *out_strides,
const int32_t *indices, const int32_t *updates, int32_t *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<int16_t, int64_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int64_t *out_strides,
const int64_t *indices, const int16_t *updates, int16_t *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<int16_t, int32_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int32_t *out_strides,
const int32_t *indices, const int16_t *updates, int16_t *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<uint8_t, int64_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int64_t *out_strides,
const int64_t *indices, const uint8_t *updates, uint8_t *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<uint8_t, int32_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int32_t *out_strides,
const int32_t *indices, const uint8_t *updates, uint8_t *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<int8_t, int64_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int64_t *out_strides,
const int64_t *indices, const int8_t *updates, int8_t *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<int8_t, int32_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int32_t *out_strides,
const int32_t *indices, const int8_t *updates, int8_t *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<bool, int64_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int64_t *out_strides,
const int64_t *indices, const bool *updates, bool *input,
cudaStream_t cuda_stream);
template void CalScatterNdUpdate<bool, int32_t>(const size_t &unit_size, const size_t &num_units,
const size_t &index_depth, const int32_t *out_strides,
const int32_t *indices, const bool *updates, bool *input,
cudaStream_t cuda_stream);

View File

@ -4479,7 +4479,7 @@ class ScatterNdAdd(_ScatterNdOp):
ValueError: If the shape of `updates` is not equal to `indices_shape[:-1] + x_shape[indices_shape[-1]:]`.
Supported Platforms:
``Ascend``
``Ascend`` ``GPU``
Examples:
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
@ -4556,7 +4556,7 @@ class ScatterNdSub(_ScatterNdOp):
ValueError: If the shape of `updates` is not equal to `indices_shape[:-1] + x_shape[indices_shape[-1]:]`.
Supported Platforms:
``Ascend``
``Ascend`` ``GPU``
Examples:
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")

View File

@ -0,0 +1,234 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter
import mindspore.common.dtype as mstype
import mindspore.ops as ops
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
func_map = {
"update": ops.ScatterNdUpdate,
"add": ops.ScatterNdAdd,
"sub": ops.ScatterNdSub,
}
class TestScatterNdFuncNet(nn.Cell):
def __init__(self, func, lock, inputx, indices, updates):
super(TestScatterNdFuncNet, self).__init__()
self.scatter_func = func_map[func](use_locking=lock)
self.inputx = Parameter(inputx, name="inputx")
self.indices = Parameter(indices, name="indices")
self.updates = Parameter(updates, name="updates")
def construct(self):
out = self.scatter_func(self.inputx, self.indices, self.updates)
return out
def scatter_nd_func_net(func, inputx, indices, updates):
lock = True
net = TestScatterNdFuncNet(func, lock, inputx, indices, updates)
return net()
def scatter_nd_func_use_locking_false_net(func, inputx, indices, updates):
lock = False
net = TestScatterNdFuncNet(func, lock, inputx, indices, updates)
return net()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_scatter_nd_func_small_float32():
inputx = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32)
indices = Tensor(np.array([[0, 0], [1, 1]]), mstype.int32)
updates = Tensor(np.array([1.0, 2.2]), mstype.float32)
# update
output = scatter_nd_func_net("update", inputx, indices, updates)
expected = np.array([[1.0, 0.3, 3.6], [0.4, 2.2, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# add
output = scatter_nd_func_net("add", inputx, indices, updates)
expected = np.array([[0.9, 0.3, 3.6], [0.4, 2.7, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# sub
output = scatter_nd_func_net("sub", inputx, indices, updates)
expected = np.array([[-1.1, 0.3, 3.6], [0.4, -1.7, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_nd_func_input_updated():
inputx = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32)
indices = Tensor(np.array([[0, 0], [1, 1]]), mstype.int32)
updates = Tensor(np.array([1.0, 2.2]), mstype.float32)
lock = True
# update
net = TestScatterNdFuncNet("update", lock, inputx, indices, updates)
net()
expected = np.array([[1.0, 0.3, 3.6], [0.4, 2.2, -3.2]])
np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected)
# add
net = TestScatterNdFuncNet("add", lock, inputx, indices, updates)
net()
expected = np.array([[0.9, 0.3, 3.6], [0.4, 2.7, -3.2]])
np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected)
# sub
net = TestScatterNdFuncNet("sub", lock, inputx, indices, updates)
net()
expected = np.array([[-1.1, 0.3, 3.6], [0.4, -1.7, -3.2]])
np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_scatter_nd_func_small_float32_using_locking_false():
inputx = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32)
indices = Tensor(np.array([[0, 0], [1, 1]]), mstype.int32)
updates = Tensor(np.array([1.0, 2.2]), mstype.float32)
# update
output = scatter_nd_func_use_locking_false_net("update", inputx, indices, updates)
expected = np.array([[1.0, 0.3, 3.6], [0.4, 2.2, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# add
output = scatter_nd_func_use_locking_false_net("add", inputx, indices, updates)
expected = np.array([[0.9, 0.3, 3.6], [0.4, 2.7, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# sub
output = scatter_nd_func_use_locking_false_net("sub", inputx, indices, updates)
expected = np.array([[-1.1, 0.3, 3.6], [0.4, -1.7, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_scatter_nd_func_small_int32():
inputx = Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mstype.float32)
indices = Tensor(np.array([[4], [3], [1], [7]]), mstype.int32)
updates = Tensor(np.array([9, 10, 11, 12]), mstype.float32)
# update
output = scatter_nd_func_net("update", inputx, indices, updates)
expected = np.array([1, 11, 3, 10, 9, 6, 7, 12])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# add
output = scatter_nd_func_net("add", inputx, indices, updates)
expected = np.array([1, 13, 3, 14, 14, 6, 7, 20])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# sub
output = scatter_nd_func_net("sub", inputx, indices, updates)
expected = np.array([1, -9, 3, -6, -4, 6, 7, -4])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_scatter_nd_func_multi_dims():
inputx = Tensor(np.zeros((4, 4, 4)), mstype.float32)
indices = Tensor(np.array([[0], [2]]), mstype.int32)
updates = Tensor(
np.array(
[
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
]
),
mstype.float32,
)
# update
output = scatter_nd_func_net("update", inputx, indices, updates)
expected = np.array(
[
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
]
)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# add
output = scatter_nd_func_net("add", inputx, indices, updates)
expected = np.array(
[
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
]
)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# sub
output = scatter_nd_func_net("sub", inputx, indices, updates)
expected = np.array(
[
[[-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7], [-8, -8, -8, -8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7], [-8, -8, -8, -8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
]
)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_scatter_nd_func_one_value():
inputx = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32)
indices = Tensor(np.array([[0, 1]]), mstype.int32)
updates = Tensor(np.array([1.0]), mstype.float32)
# update
output = scatter_nd_func_net("update", inputx, indices, updates)
expected = np.array([[-0.1, 1.0, 3.6], [0.4, 0.5, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# add
output = scatter_nd_func_net("add", inputx, indices, updates)
expected = np.array([[-0.1, 1.3, 3.6], [0.4, 0.5, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
# sub
output = scatter_nd_func_net("sub", inputx, indices, updates)
expected = np.array([[-0.1, -0.7, 3.6], [0.4, 0.5, -3.2]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)

View File

@ -1,131 +0,0 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter
import mindspore.common.dtype as mstype
import mindspore.ops as ops
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_op1():
class ScatterNdUpdate(nn.Cell):
def __init__(self):
super(ScatterNdUpdate, self).__init__()
self.scatter_nd_update = ops.ScatterNdUpdate()
self.x = Parameter(
Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32), name="x"
)
def construct(self, indices, update):
return self.scatter_nd_update(self.x, indices, update)
indices = Tensor(np.array([[0, 0], [1, 1]]), mstype.int32)
update = Tensor(np.array([1.0, 2.2]), mstype.float32)
scatter_nd_update = ScatterNdUpdate()
scatter_nd_update(indices, update)
expect = [[1.0, 0.3, 3.6], [0.4, 2.2, -3.2]]
assert np.allclose(scatter_nd_update.x.data.asnumpy(), np.array(expect, np.float))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_op2():
class ScatterNdUpdate(nn.Cell):
def __init__(self):
super(ScatterNdUpdate, self).__init__()
self.scatter_nd_update = ops.ScatterNdUpdate()
self.x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mstype.float32), name="x")
def construct(self, indices, update):
return self.scatter_nd_update(self.x, indices, update)
indices = Tensor(np.array([[4], [3], [1], [7]]), mstype.int32)
update = Tensor(np.array([9, 10, 11, 12]), mstype.float32)
scatter_nd_update = ScatterNdUpdate()
scatter_nd_update(indices, update)
expect = [1, 11, 3, 10, 9, 6, 7, 12]
assert np.allclose(scatter_nd_update.x.data.asnumpy(), np.array(expect, dtype=float))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_op3():
class ScatterNdUpdate(nn.Cell):
def __init__(self):
super(ScatterNdUpdate, self).__init__()
self.scatter_nd_update = ops.ScatterNdUpdate()
self.x = Parameter(Tensor(np.zeros((4, 4, 4)), mstype.float32), name="x")
def construct(self, indices, update):
return self.scatter_nd_update(self.x, indices, update)
indices = Tensor(np.array([[0], [2]]), mstype.int32)
update = Tensor(
np.array(
[
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
]
),
mstype.float32,
)
scatter_nd_update = ScatterNdUpdate()
scatter_nd_update(indices, update)
expect = [
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
]
assert np.allclose(scatter_nd_update.x.data.asnumpy(), np.array(expect, dtype=float))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_traning
@pytest.mark.env_onecard
def test_op4():
class ScatterNdUpdate(nn.Cell):
def __init__(self):
super(ScatterNdUpdate, self).__init__()
self.scatter_nd_update = ops.ScatterNdUpdate()
self.x = Parameter(
Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32), name="x"
)
def construct(self, indices, update):
return self.scatter_nd_update(self.x, indices, update)
indices = Tensor(np.array([[0, 1]]), mstype.int32)
update = Tensor(np.array([1.0]), mstype.float32)
scatter_nd_update = ScatterNdUpdate()
out = scatter_nd_update(indices, update)
assert np.allclose(out.asnumpy(), scatter_nd_update.x.data.asnumpy())
expect = [[-0.1, 1.0, 3.6], [0.4, 0.5, -3.2]]
assert np.allclose(out.asnumpy(), np.array(expect, np.float))