forked from mindspore-Ecosystem/mindspore
move operator primitive of Centralization to _inner_ops
This commit is contained in:
parent
e4b5336fec
commit
d8382f4d57
|
@ -41,7 +41,7 @@ from .comm_ops import (AllGather, AllReduce, _AlltoAll, AllSwap, ReduceScatter,
|
|||
from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSummary,
|
||||
TensorSummary, HistogramSummary, Print, Assert)
|
||||
from .control_ops import ControlDepend, GeSwitch, Merge
|
||||
from .inner_ops import ScalarCast, Randperm, NoRepeatNGram, LambApplyOptimizerAssign, LambApplyWeightAssign, MakeRefKey, Centralization
|
||||
from .inner_ops import ScalarCast, Randperm, NoRepeatNGram, LambApplyOptimizerAssign, LambApplyWeightAssign, MakeRefKey
|
||||
|
||||
from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, AssignSub, Atan2, BatchMatMul,
|
||||
BitwiseAnd, BitwiseOr,
|
||||
|
|
|
@ -22,7 +22,7 @@ from ...common import dtype as mstype
|
|||
from ..primitive import PrimitiveWithCheck, PrimitiveWithInfer, prim_attr_register
|
||||
from ..operations.math_ops import _infer_shape_reduce
|
||||
from ...communication.management import GlobalComm
|
||||
|
||||
from .. import signature as sig
|
||||
|
||||
class ExtractImagePatches(PrimitiveWithInfer):
|
||||
"""
|
||||
|
@ -815,3 +815,70 @@ class SyncBatchNorm(PrimitiveWithInfer):
|
|||
args_moving = {"mean": mean, "variance": variance}
|
||||
validator.check_tensors_dtypes_same_and_valid(args_moving, [mstype.float16, mstype.float32], self.name)
|
||||
return (input_x, scale, bias, input_x, input_x)
|
||||
|
||||
|
||||
class Centralization(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes centralization. y = x - mean(x, axis).
|
||||
|
||||
Note:
|
||||
The dimension index starts at 0 and must be in the range `[-input.ndim, input.ndim)`.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor. The data type mast be float16 or float32.
|
||||
- **axis** (Union[Int, Tuple(Int), List(Int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
|
||||
Only constant value is allowed. Must be in the range [-rank(input_x), rank(input_x)).
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and dtype as the `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `axis` is not one of the following types: int, list, tuple, NoneType.
|
||||
TypeError: If `axis` has non-Int elements.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> mindspore.set_seed(1)
|
||||
>>> input_x = Tensor(np.random.randn(2, 2).astype(np.float32))
|
||||
>>> centralization = ops.Centralization()
|
||||
>>> output = centralization(input_x, -1)
|
||||
>>> print(output)
|
||||
[[ 1.1180509 -1.1180508]
|
||||
[ 0.2723984 -0.2723984]]
|
||||
"""
|
||||
|
||||
__mindspore_signature__ = (
|
||||
sig.make_sig('input_x'),
|
||||
sig.make_sig('axis', default=())
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""Initialize Centralization"""
|
||||
self.init_prim_io_names(inputs=['input_x', 'axis'], outputs=['output'])
|
||||
|
||||
def __infer__(self, input_x, axis):
|
||||
x_shape = list(input_x['shape'])
|
||||
x_dtype = input_x['dtype']
|
||||
axis_v = axis['value']
|
||||
rank = len(x_shape)
|
||||
|
||||
args = {'input_x': input_x['dtype']}
|
||||
validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name)
|
||||
|
||||
if axis_v is None:
|
||||
raise ValueError(f"For {self.name}, axis must be const.")
|
||||
validator.check_value_type('axis', axis_v, [int, list, tuple], self.name)
|
||||
|
||||
if isinstance(axis_v, int):
|
||||
validator.check_int_range(axis_v, -rank, rank, Rel.INC_LEFT, 'axis', self.name)
|
||||
elif axis:
|
||||
for index, one_axis in enumerate(axis_v):
|
||||
validator.check_value_type('axis[%d]' % index, one_axis, [int], self.name)
|
||||
|
||||
out = {'shape': x_shape,
|
||||
'dtype': x_dtype,
|
||||
'value': None}
|
||||
return out
|
||||
|
|
|
@ -21,7 +21,6 @@ from ..._checkparam import Rel
|
|||
from ...common import dtype as mstype
|
||||
from ...common.dtype import tensor, dtype_to_pytype
|
||||
from ..primitive import prim_attr_register, Primitive, PrimitiveWithInfer
|
||||
from .. import signature as sig
|
||||
|
||||
|
||||
class ScalarCast(PrimitiveWithInfer):
|
||||
|
@ -358,70 +357,3 @@ class MakeRefKey(Primitive):
|
|||
|
||||
def __call__(self):
|
||||
pass
|
||||
|
||||
|
||||
class Centralization(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes centralization. y = x - mean(x, axis).
|
||||
|
||||
Note:
|
||||
The dimension index starts at 0 and must be in the range `[-input.ndim, input.ndim)`.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor. The data type mast be float16 or float32.
|
||||
- **axis** (Union[Int, Tuple(Int), List(Int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
|
||||
Only constant value is allowed. Must be in the range [-rank(input_x), rank(input_x)).
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and dtype as the `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `axis` is not one of the following types: int, list, tuple, NoneType.
|
||||
TypeError: If `axis` has non-Int elements.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> mindspore.set_seed(1)
|
||||
>>> input_x = Tensor(np.random.randn(2, 2).astype(np.float32))
|
||||
>>> centralization = ops.Centralization()
|
||||
>>> output = centralization(input_x, -1)
|
||||
>>> print(output)
|
||||
[[ 1.1180509 -1.1180508]
|
||||
[ 0.2723984 -0.2723984]]
|
||||
"""
|
||||
|
||||
__mindspore_signature__ = (
|
||||
sig.make_sig('input_x'),
|
||||
sig.make_sig('axis', default=())
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""Initialize Centralization"""
|
||||
self.init_prim_io_names(inputs=['input_x', 'axis'], outputs=['output'])
|
||||
|
||||
def __infer__(self, input_x, axis):
|
||||
x_shape = list(input_x['shape'])
|
||||
x_dtype = input_x['dtype']
|
||||
axis_v = axis['value']
|
||||
rank = len(x_shape)
|
||||
|
||||
args = {'input_x': input_x['dtype']}
|
||||
validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name)
|
||||
|
||||
if axis_v is None:
|
||||
raise ValueError(f"For {self.name}, axis must be const.")
|
||||
validator.check_value_type('axis', axis_v, [int, list, tuple], self.name)
|
||||
|
||||
if isinstance(axis_v, int):
|
||||
validator.check_int_range(axis_v, -rank, rank, Rel.INC_LEFT, 'axis', self.name)
|
||||
elif axis:
|
||||
for index, one_axis in enumerate(axis_v):
|
||||
validator.check_value_type('axis[%d]' % index, one_axis, [int], self.name)
|
||||
|
||||
out = {'shape': x_shape,
|
||||
'dtype': x_dtype,
|
||||
'value': None}
|
||||
return out
|
||||
|
|
|
@ -18,12 +18,12 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _inner_ops as inner
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, axis=()):
|
||||
super(Net, self).__init__()
|
||||
self.centralization = P.Centralization()
|
||||
self.centralization = inner.Centralization()
|
||||
self.axis = axis
|
||||
|
||||
@ms_function
|
||||
|
|
Loading…
Reference in New Issue