forked from mindspore-Ecosystem/mindspore
!8360 [MS][LITE][GPU]refactor op code
From: @chenzupeng Reviewed-by: Signed-off-by: @ddwsky
This commit is contained in:
commit
d70f25edc0
|
@ -1,36 +0,0 @@
|
|||
#ifdef cl_khr_fp16
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
#define divide_no_check(a, b) (a / b)
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void AvgPooling2d_NHWC4_IMG(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape,
|
||||
const int4 output_shape, const int2 stride, const int2 kernel_size,
|
||||
const int2 padding) {
|
||||
// axis to dst tensor coordinate
|
||||
int X = get_global_id(2);
|
||||
int Y = get_global_id(1);
|
||||
int Z = get_global_id(0);
|
||||
|
||||
// boundary check
|
||||
if (X >= output_shape.x || Y >= output_shape.y || Z >= output_shape.w) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLT4 r = (FLT4)(0.0f);
|
||||
FLT window_size = 0.0f;
|
||||
int xs = X * stride.x - padding.x;
|
||||
int ys = Y * stride.y - padding.y;
|
||||
|
||||
for (int ky = 0; ky < kernel_size.y; ++ky) {
|
||||
int y_c = ys + ky;
|
||||
bool outside_y = y_c < 0 || y_c >= input_shape.y;
|
||||
for (int kx = 0; kx < kernel_size.x; ++kx) {
|
||||
int x_c = xs + kx;
|
||||
bool outside = outside_y || x_c < 0 || x_c >= input_shape.x;
|
||||
r += !outside ? READ_IMAGE(input, smp_zero, (int2)(y_c * input_shape.w + Z, x_c)) : (FLT4)(0.0f);
|
||||
window_size += !outside ? 1.0f : 0.0f;
|
||||
}
|
||||
}
|
||||
FLT4 result = TO_FLT4(divide_no_check(r, window_size));
|
||||
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), result);
|
||||
}
|
|
@ -1,119 +1,7 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void conv2d_transpose2x2_NHWC4(__read_only image2d_t src_data, __global FLT16 *weight,
|
||||
__read_only image2d_t biases, __write_only image2d_t dst_data, int2 kernel_size,
|
||||
int2 stride, int2 padding, int4 src_size, int4 dst_size) {
|
||||
int h = get_global_id(0);
|
||||
int kh = h % 2;
|
||||
int src_h = h / 2;
|
||||
src_h = src_h * 2;
|
||||
int w = get_global_id(1);
|
||||
int kw = w % 2;
|
||||
int src_w = w / 2;
|
||||
src_w = src_w * 2;
|
||||
int co = get_global_id(2);
|
||||
if (src_h * 2 >= dst_size.x || src_w * 2 >= dst_size.y || co >= dst_size.z) return;
|
||||
FLT4 r0 = (FLT4)(0.f);
|
||||
FLT4 r1 = (FLT4)(0.f);
|
||||
FLT4 r2 = (FLT4)(0.f);
|
||||
FLT4 r3 = (FLT4)(0.f);
|
||||
int base_w = (co * 4 + kh * 2 + kw) * src_size.z;
|
||||
for (int ci = 0; ci < src_size.z; ++ci) {
|
||||
FLT4 x0 = READ_IMAGE(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h));
|
||||
FLT4 x1 = READ_IMAGE(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h + 1));
|
||||
FLT4 x2 = READ_IMAGE(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h));
|
||||
FLT4 x3 = READ_IMAGE(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h + 1));
|
||||
FLT16 weight_cache = weight[base_w++];
|
||||
r0 += x0.x * weight_cache.s0123;
|
||||
r0 += x0.y * weight_cache.s4567;
|
||||
r0 += x0.z * weight_cache.s89ab;
|
||||
r0 += x0.w * weight_cache.scdef;
|
||||
|
||||
r1 += x1.x * weight_cache.s0123;
|
||||
r1 += x1.y * weight_cache.s4567;
|
||||
r1 += x1.z * weight_cache.s89ab;
|
||||
r1 += x1.w * weight_cache.scdef;
|
||||
|
||||
r2 += x2.x * weight_cache.s0123;
|
||||
r2 += x2.y * weight_cache.s4567;
|
||||
r2 += x2.z * weight_cache.s89ab;
|
||||
r2 += x2.w * weight_cache.scdef;
|
||||
|
||||
r3 += x3.x * weight_cache.s0123;
|
||||
r3 += x3.y * weight_cache.s4567;
|
||||
r3 += x3.z * weight_cache.s89ab;
|
||||
r3 += x3.w * weight_cache.scdef;
|
||||
}
|
||||
FLT4 bias_val = READ_IMAGE(biases, smp_zero, (int2)(co, 0));
|
||||
r0 += bias_val;
|
||||
r1 += bias_val;
|
||||
r2 += bias_val;
|
||||
r3 += bias_val;
|
||||
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh), r0);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh + 2), r1);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh), r2);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh + 2), r3);
|
||||
}
|
||||
|
||||
__kernel void conv2d_transpose2x2_NC4HW4(__read_only image2d_t src_data, __global FLT16 *weight,
|
||||
__read_only image2d_t biases, __write_only image2d_t dst_data,
|
||||
int2 kernel_size, int2 stride, int2 padding, int4 src_size, int4 dst_size) {
|
||||
int h = get_global_id(0);
|
||||
int kh = h % 2;
|
||||
int src_h = h / 2;
|
||||
src_h = src_h * 2;
|
||||
int w = get_global_id(1);
|
||||
int kw = w % 2;
|
||||
int src_w = w / 2;
|
||||
src_w = src_w * 2;
|
||||
int co = get_global_id(2);
|
||||
if (src_h * 2 >= dst_size.x || src_w * 2 >= dst_size.y || co >= dst_size.z) return;
|
||||
FLT4 r0 = (FLT4)(0.f);
|
||||
FLT4 r1 = (FLT4)(0.f);
|
||||
FLT4 r2 = (FLT4)(0.f);
|
||||
FLT4 r3 = (FLT4)(0.f);
|
||||
int base_w = (co * 4 + kh * 2 + kw) * src_size.z;
|
||||
for (int ci = 0; ci < src_size.z; ++ci) {
|
||||
FLT4 x0 = READ_IMAGE(src_data, smp_zero, (int2)(src_w, ci * src_size.x + src_h));
|
||||
FLT4 x1 = READ_IMAGE(src_data, smp_zero, (int2)(src_w, ci * src_size.x + src_h + 1));
|
||||
FLT4 x2 = READ_IMAGE(src_data, smp_zero, (int2)(src_w + 1, ci * src_size.x + src_h));
|
||||
FLT4 x3 = READ_IMAGE(src_data, smp_zero, (int2)(src_w + 1, ci * src_size.x + src_h + 1));
|
||||
FLT16 weight_cache = weight[base_w++];
|
||||
r0 += x0.x * weight_cache.s0123;
|
||||
r0 += x0.y * weight_cache.s4567;
|
||||
r0 += x0.z * weight_cache.s89ab;
|
||||
r0 += x0.w * weight_cache.scdef;
|
||||
|
||||
r1 += x1.x * weight_cache.s0123;
|
||||
r1 += x1.y * weight_cache.s4567;
|
||||
r1 += x1.z * weight_cache.s89ab;
|
||||
r1 += x1.w * weight_cache.scdef;
|
||||
|
||||
r2 += x2.x * weight_cache.s0123;
|
||||
r2 += x2.y * weight_cache.s4567;
|
||||
r2 += x2.z * weight_cache.s89ab;
|
||||
r2 += x2.w * weight_cache.scdef;
|
||||
|
||||
r3 += x3.x * weight_cache.s0123;
|
||||
r3 += x3.y * weight_cache.s4567;
|
||||
r3 += x3.z * weight_cache.s89ab;
|
||||
r3 += x3.w * weight_cache.scdef;
|
||||
}
|
||||
FLT4 bias_val = READ_IMAGE(biases, smp_zero, (int2)(co, 0));
|
||||
r0 += bias_val;
|
||||
r1 += bias_val;
|
||||
r2 += bias_val;
|
||||
r3 += bias_val;
|
||||
|
||||
WRITE_IMAGE(dst_data, (int2)(2 * src_w + kw, co * dst_size.x + 2 * src_h + kh), r0);
|
||||
WRITE_IMAGE(dst_data, (int2)(2 * src_w + kw, co * dst_size.x + 2 * src_h + kh + 2), r1);
|
||||
WRITE_IMAGE(dst_data, (int2)(2 * src_w + kw + 2, co * dst_size.x + 2 * src_h + kh), r2);
|
||||
WRITE_IMAGE(dst_data, (int2)(2 * src_w + kw + 2, co * dst_size.x + 2 * src_h + kh + 2), r3);
|
||||
}
|
||||
|
||||
__kernel void conv2d_transpose_NHWC4(__read_only image2d_t src_data, __global FLT16 *weight,
|
||||
__read_only image2d_t biases, __write_only image2d_t dst_data, int2 kernel_size,
|
||||
__kernel void conv2d_transpose_NHWC4(__read_only image2d_t src_data, __write_only image2d_t dst_data,
|
||||
__global FLT16 *weight, __read_only image2d_t biases, int2 kernel_size,
|
||||
int2 stride, int2 padding, int4 src_size, int4 dst_size) {
|
||||
int dst_h = get_global_id(0);
|
||||
int rem_h = dst_h % stride.x;
|
||||
|
|
|
@ -2,8 +2,8 @@
|
|||
#define C4NUM 4
|
||||
#define UP_DIV(x, y) (((x) + (y) - (1)) / (y))
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void FullConnection_NHWC4(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
||||
__write_only image2d_t output, int4 in_shape, int2 out_shape, float act_min,
|
||||
__kernel void FullConnection_NHWC4(__read_only image2d_t input, __write_only image2d_t output, __global FLT16 *weight,
|
||||
__read_only image2d_t bias, int4 in_shape, int2 out_shape, float act_min,
|
||||
float act_max) {
|
||||
int gidx = get_global_id(0); // CO4
|
||||
int gidz = get_global_id(2); // N
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
#define C4NUM 4
|
||||
#define UP_DIV(x, y) (((x) + (y) - (1)) / (y))
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void MatMul_NHWC4_2d(__read_only image2d_t input, __global FLT16 *weight, __write_only image2d_t output,
|
||||
__kernel void MatMul_NHWC4_2d(__read_only image2d_t input, __write_only image2d_t output, __global FLT16 *weight,
|
||||
int4 in_shape, int4 out_shape) {
|
||||
int gidx = get_global_id(0); // CO4
|
||||
int gidz = get_global_id(2); // N
|
||||
|
@ -32,37 +32,7 @@ __kernel void MatMul_NHWC4_2d(__read_only image2d_t input, __global FLT16 *weigh
|
|||
}
|
||||
}
|
||||
|
||||
__kernel void MatMul_NC4HW4_2d(__read_only image2d_t input, __global FLT16 *weight, __write_only image2d_t output,
|
||||
int4 in_shape, int4 out_shape) {
|
||||
int gidx = get_global_id(0); // CO4
|
||||
int gidz = get_global_id(2); // N
|
||||
int lidx = get_local_id(0);
|
||||
int lidy = get_local_id(1);
|
||||
int ci4 = UP_DIV(in_shape.w, C4NUM);
|
||||
int co4 = UP_DIV(out_shape.w, C4NUM);
|
||||
int n = out_shape.z;
|
||||
bool inside = gidx < co4 && gidz < n;
|
||||
FLT4 result = (FLT4)(0.0f);
|
||||
for (uint i = lidy; i < ci4 && inside; i += 4) {
|
||||
FLT4 v = READ_IMAGE(input, smp_zero, (int2)(gidz * ci4 + i, 0));
|
||||
FLT16 w = weight[i * co4 + gidx];
|
||||
result.x += dot(v, w.s0123);
|
||||
result.y += dot(v, w.s4567);
|
||||
result.z += dot(v, w.s89ab);
|
||||
result.w += dot(v, w.scdef);
|
||||
}
|
||||
__local FLT4 temp[32][4];
|
||||
temp[lidx][lidy] = result;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (lidy == 0 && inside) {
|
||||
result += temp[lidx][1];
|
||||
result += temp[lidx][2];
|
||||
result += temp[lidx][3];
|
||||
WRITE_IMAGE(output, (int2)(0, gidz * co4 + gidx), result);
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void MatMul_NHWC4_4d(__read_only image2d_t input, __global FLT16 *weight, __write_only image2d_t output,
|
||||
__kernel void MatMul_NHWC4_4d(__read_only image2d_t input, __write_only image2d_t output, __global FLT16 *weight,
|
||||
int4 in_shape, int4 out_shape) {
|
||||
int gidx = get_global_id(0); // CO4
|
||||
int gidy = get_global_id(1); // N * H * 4
|
||||
|
@ -95,39 +65,3 @@ __kernel void MatMul_NHWC4_4d(__read_only image2d_t input, __global FLT16 *weigh
|
|||
WRITE_IMAGE(output, (int2)(gidz * co4 + gidx, nh_index), result);
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void MatMul_NC4HW4_4d(__read_only image2d_t input, __global FLT16 *weight, __write_only image2d_t output,
|
||||
int4 in_shape, int4 out_shape) {
|
||||
int gidx = get_global_id(0); // CO4
|
||||
int gidy = get_global_id(1); // N * H * 4
|
||||
int gidz = get_global_id(2); // W
|
||||
int lidx = get_local_id(0);
|
||||
int lidy = get_local_id(1);
|
||||
int ci4 = UP_DIV(in_shape.w, C4NUM);
|
||||
int co4 = UP_DIV(out_shape.w, C4NUM);
|
||||
int n = out_shape.x;
|
||||
int h = out_shape.y;
|
||||
int w = out_shape.z;
|
||||
int nh_index = gidy / 4;
|
||||
bool inside = gidx < co4 && gidz < w && nh_index < n * h;
|
||||
int n_index = nh_index / h;
|
||||
int h_index = nh_index % h;
|
||||
FLT4 result = (FLT4)(0.0f);
|
||||
for (uint i = lidy; i < ci4 && inside; i += 4) {
|
||||
FLT4 v = READ_IMAGE(input, smp_zero, (int2)(gidz, n_index * ci4 * h + i * h + h_index));
|
||||
FLT16 weight_value = weight[nh_index * ci4 * co4 + i * co4 + gidx];
|
||||
result.x += dot(v, weight_value.s0123);
|
||||
result.y += dot(v, weight_value.s4567);
|
||||
result.z += dot(v, weight_value.s89ab);
|
||||
result.w += dot(v, weight_value.scdef);
|
||||
}
|
||||
__local FLT4 temp[32][4];
|
||||
temp[lidx][lidy] = result;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (lidy == 0 && inside) {
|
||||
result += temp[lidx][1];
|
||||
result += temp[lidx][2];
|
||||
result += temp[lidx][3];
|
||||
WRITE_IMAGE(output, (int2)(gidz, n_index * co4 * h + gidx * h + h_index), result);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,61 +0,0 @@
|
|||
#ifdef cl_khr_fp16
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
__constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;
|
||||
__kernel void MaxPooling2d_NHWC4_IMG(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape,
|
||||
const int4 output_shape, const int2 stride, const int2 kernel_size,
|
||||
const int2 padding) {
|
||||
// axis to dst tensor coordinate
|
||||
int X = get_global_id(2);
|
||||
int Y = get_global_id(1);
|
||||
int Z = get_global_id(0);
|
||||
|
||||
// boundary check
|
||||
if (X >= output_shape.x || Y >= output_shape.y || Z >= output_shape.w) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLT4 maximum = (FLT4)(-10000.0f);
|
||||
int xs = X * stride.x - padding.x;
|
||||
int ys = Y * stride.y - padding.y;
|
||||
for (int ky = 0; ky < kernel_size.y; ++ky) {
|
||||
int y_c = ys + ky;
|
||||
if (y_c < 0 || y_c >= input_shape.y) continue;
|
||||
for (int kx = 0; kx < kernel_size.x; ++kx) {
|
||||
int x_c = xs + kx;
|
||||
if (x_c < 0 || x_c >= input_shape.x) continue;
|
||||
FLT4 src = READ_IMAGE(input, smp_none, (int2)(y_c * input_shape.w + Z, x_c));
|
||||
maximum = max(src, maximum);
|
||||
}
|
||||
}
|
||||
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), maximum);
|
||||
}
|
||||
|
||||
__kernel void MaxPooling2d_ReLU_NHWC4_IMG(__read_only image2d_t input, __write_only image2d_t output,
|
||||
const int4 input_shape, const int4 output_shape, const int2 stride,
|
||||
const int2 kernel_size, const int2 padding) {
|
||||
// axis to dst tensor coordinate
|
||||
int X = get_global_id(2);
|
||||
int Y = get_global_id(1);
|
||||
int Z = get_global_id(0);
|
||||
|
||||
// boundary check
|
||||
if (X >= output_shape.x || Y >= output_shape.y || Z >= output_shape.w) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLT4 maximum = (FLT4)(-10000.0f);
|
||||
int xs = X * stride.x - padding.x;
|
||||
int ys = Y * stride.y - padding.y;
|
||||
for (int ky = 0; ky < kernel_size.y; ++ky) {
|
||||
int y_c = ys + ky;
|
||||
if (y_c < 0 || y_c >= input_shape.y) continue;
|
||||
for (int kx = 0; kx < kernel_size.x; ++kx) {
|
||||
int x_c = xs + kx;
|
||||
if (x_c < 0 || x_c >= input_shape.x) continue;
|
||||
FLT4 src = READ_IMAGE(input, smp_none, (int2)(y_c * input_shape.w + Z, x_c));
|
||||
maximum = max(src, maximum);
|
||||
}
|
||||
}
|
||||
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), max(maximum, (FLT4)(0.f)));
|
||||
}
|
|
@ -0,0 +1,126 @@
|
|||
#ifdef cl_khr_fp16
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
#define divide_no_check(a, b) (a / b)
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void AvgPooling2d_NHWC4_IMG(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape,
|
||||
const int4 output_shape, const int2 stride, const int2 kernel_size,
|
||||
const int2 padding) {
|
||||
// axis to dst tensor coordinate
|
||||
int X = get_global_id(2);
|
||||
int Y = get_global_id(1);
|
||||
int Z = get_global_id(0);
|
||||
|
||||
// boundary check
|
||||
if (X >= output_shape.x || Y >= output_shape.y || Z >= output_shape.w) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLT4 r = (FLT4)(0.0f);
|
||||
FLT window_size = 0.0f;
|
||||
int xs = X * stride.x - padding.x;
|
||||
int ys = Y * stride.y - padding.y;
|
||||
|
||||
for (int ky = 0; ky < kernel_size.y; ++ky) {
|
||||
int y_c = ys + ky;
|
||||
bool outside_y = y_c < 0 || y_c >= input_shape.y;
|
||||
for (int kx = 0; kx < kernel_size.x; ++kx) {
|
||||
int x_c = xs + kx;
|
||||
bool outside = outside_y || x_c < 0 || x_c >= input_shape.x;
|
||||
r += !outside ? READ_IMAGE(input, smp_zero, (int2)(y_c * input_shape.w + Z, x_c)) : (FLT4)(0.0f);
|
||||
window_size += !outside ? 1.0f : 0.0f;
|
||||
}
|
||||
}
|
||||
FLT4 result = TO_FLT4(divide_no_check(r, window_size));
|
||||
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), result);
|
||||
}
|
||||
|
||||
__kernel void AvgPooling2d_ReLU_NHWC4_IMG(__read_only image2d_t input, __write_only image2d_t output,
|
||||
const int4 input_shape, const int4 output_shape, const int2 stride,
|
||||
const int2 kernel_size, const int2 padding) {
|
||||
// axis to dst tensor coordinate
|
||||
int X = get_global_id(2);
|
||||
int Y = get_global_id(1);
|
||||
int Z = get_global_id(0);
|
||||
|
||||
// boundary check
|
||||
if (X >= output_shape.x || Y >= output_shape.y || Z >= output_shape.w) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLT4 r = (FLT4)(0.0f);
|
||||
FLT window_size = 0.0f;
|
||||
int xs = X * stride.x - padding.x;
|
||||
int ys = Y * stride.y - padding.y;
|
||||
|
||||
for (int ky = 0; ky < kernel_size.y; ++ky) {
|
||||
int y_c = ys + ky;
|
||||
bool outside_y = y_c < 0 || y_c >= input_shape.y;
|
||||
for (int kx = 0; kx < kernel_size.x; ++kx) {
|
||||
int x_c = xs + kx;
|
||||
bool outside = outside_y || x_c < 0 || x_c >= input_shape.x;
|
||||
r += !outside ? READ_IMAGE(input, smp_zero, (int2)(y_c * input_shape.w + Z, x_c)) : (FLT4)(0.0f);
|
||||
window_size += !outside ? 1.0f : 0.0f;
|
||||
}
|
||||
}
|
||||
FLT4 result = TO_FLT4(divide_no_check(r, window_size));
|
||||
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), max(result, (FLT4)(0.f)));
|
||||
}
|
||||
|
||||
__kernel void MaxPooling2d_NHWC4_IMG(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape,
|
||||
const int4 output_shape, const int2 stride, const int2 kernel_size,
|
||||
const int2 padding) {
|
||||
// axis to dst tensor coordinate
|
||||
int X = get_global_id(2);
|
||||
int Y = get_global_id(1);
|
||||
int Z = get_global_id(0);
|
||||
|
||||
// boundary check
|
||||
if (X >= output_shape.x || Y >= output_shape.y || Z >= output_shape.w) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLT4 maximum = (FLT4)(-10000.0f);
|
||||
int xs = X * stride.x - padding.x;
|
||||
int ys = Y * stride.y - padding.y;
|
||||
for (int ky = 0; ky < kernel_size.y; ++ky) {
|
||||
int y_c = ys + ky;
|
||||
if (y_c < 0 || y_c >= input_shape.y) continue;
|
||||
for (int kx = 0; kx < kernel_size.x; ++kx) {
|
||||
int x_c = xs + kx;
|
||||
if (x_c < 0 || x_c >= input_shape.x) continue;
|
||||
FLT4 src = READ_IMAGE(input, smp_zero, (int2)(y_c * input_shape.w + Z, x_c));
|
||||
maximum = max(src, maximum);
|
||||
}
|
||||
}
|
||||
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), maximum);
|
||||
}
|
||||
|
||||
__kernel void MaxPooling2d_ReLU_NHWC4_IMG(__read_only image2d_t input, __write_only image2d_t output,
|
||||
const int4 input_shape, const int4 output_shape, const int2 stride,
|
||||
const int2 kernel_size, const int2 padding) {
|
||||
// axis to dst tensor coordinate
|
||||
int X = get_global_id(2);
|
||||
int Y = get_global_id(1);
|
||||
int Z = get_global_id(0);
|
||||
|
||||
// boundary check
|
||||
if (X >= output_shape.x || Y >= output_shape.y || Z >= output_shape.w) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLT4 maximum = (FLT4)(-10000.0f);
|
||||
int xs = X * stride.x - padding.x;
|
||||
int ys = Y * stride.y - padding.y;
|
||||
for (int ky = 0; ky < kernel_size.y; ++ky) {
|
||||
int y_c = ys + ky;
|
||||
if (y_c < 0 || y_c >= input_shape.y) continue;
|
||||
for (int kx = 0; kx < kernel_size.x; ++kx) {
|
||||
int x_c = xs + kx;
|
||||
if (x_c < 0 || x_c >= input_shape.x) continue;
|
||||
FLT4 src = READ_IMAGE(input, smp_zero, (int2)(y_c * input_shape.w + Z, x_c));
|
||||
maximum = max(src, maximum);
|
||||
}
|
||||
}
|
||||
WRITE_IMAGE(output, (int2)(Y * output_shape.w + Z, X), max(maximum, (FLT4)(0.f)));
|
||||
}
|
|
@ -42,30 +42,41 @@ using mindspore::schema::PrimitiveType_Activation;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int ActivationOpenClKernel::Init() {
|
||||
std::map<int, std::string> kernel_names{
|
||||
std::string ActivationOpenCLKernel::GetActTypeString(int act_type) {
|
||||
static std::map<int, std::string> supported_act_type = {
|
||||
{ActivationType_LEAKY_RELU, "LeakyRelu"}, {ActivationType_RELU, "Relu"}, {ActivationType_SIGMOID, "Sigmoid"},
|
||||
{ActivationType_RELU6, "Relu6"}, {ActivationType_TANH, "Tanh"}, {ActivationType_SWISH, "Swish"},
|
||||
{ActivationType_HSWISH, "HSwish"}};
|
||||
if (kernel_names.count(type_) == 0) {
|
||||
MS_LOG(ERROR) << "schema::ActivationType:" << type_ << "not found";
|
||||
return mindspore::lite::RET_ERROR;
|
||||
auto result_iter = supported_act_type.find(act_type);
|
||||
if (result_iter != supported_act_type.end()) {
|
||||
return result_iter->second;
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
int ActivationOpenCLKernel::CheckSpecs() {
|
||||
if (GetActTypeString(type_).empty()) {
|
||||
MS_LOG(ERROR) << "schema::ActivationType:" << type_ << "not found";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ActivationOpenCLKernel::Prepare() {
|
||||
outShape = Image2DInfo(out_tensors_[0]);
|
||||
local_size_ = {};
|
||||
global_size_ = {outShape.width, outShape.height};
|
||||
std::string source = activation_source;
|
||||
std::set<std::string> build_options;
|
||||
std::string program_name = "Activation";
|
||||
ocl_runtime_->LoadSource(program_name, source);
|
||||
std::string kernel_name = kernel_names[type_];
|
||||
std::string kernel_name = GetActTypeString(type_);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
SetArgs();
|
||||
SetConstArgs();
|
||||
SetGlobalLocal();
|
||||
MS_LOG(DEBUG) << kernel_name << " init Done!";
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
int ActivationOpenClKernel::SetArgs() {
|
||||
void ActivationOpenCLKernel::SetConstArgs() {
|
||||
int arg_idx = 2;
|
||||
cl_int2 image_size = {static_cast<int>(outShape.width), static_cast<int>(outShape.height)};
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, image_size);
|
||||
|
@ -78,50 +89,26 @@ int ActivationOpenClKernel::SetArgs() {
|
|||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, c4);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, last_c4);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ActivationOpenClKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " begin running!";
|
||||
void ActivationOpenCLKernel::SetGlobalLocal() {
|
||||
local_range_ = cl::NullRange;
|
||||
global_range_ = {outShape.width, outShape.height};
|
||||
}
|
||||
|
||||
int ActivationOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
auto ret = ocl_runtime_->RunKernel(kernel_, global_size_, local_size_, nullptr);
|
||||
if (ret != mindspore::lite::RET_OK) {
|
||||
auto ret = ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Run kernel:" << this->name() << " fail.";
|
||||
return mindspore::lite::RET_ERROR;
|
||||
return RET_ERROR;
|
||||
}
|
||||
return mindspore::lite::RET_OK;
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenClActivationKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
if (inputs.empty()) {
|
||||
MS_LOG(ERROR) << "Input data size must be greater than 0, but your size is " << inputs.size();
|
||||
return nullptr;
|
||||
}
|
||||
if (inputs[0]->shape().size() > 2 && inputs[0]->shape()[0] > 1) {
|
||||
MS_LOG(ERROR) << "Activation kernel:" << opParameter->name_ << " failed: Unsupported multi-batch.";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto *kernel =
|
||||
new (std::nothrow) ActivationOpenClKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "New kernel:" << opParameter->name_ << "is nullptr.";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != mindspore::lite::RET_OK) {
|
||||
MS_LOG(ERROR) << "Init activation kernel:" << opParameter->name_ << " failed!";
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Activation, OpenClActivationKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Activation, OpenClActivationKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Activation, OpenCLKernelCreator<ActivationOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Activation, OpenCLKernelCreator<ActivationOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -18,26 +18,30 @@
|
|||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_ACTIVATION_H_
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include "src/runtime/kernel/opencl/opencl_kernel.h"
|
||||
#include "nnacl/fp32/activation.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
class ActivationOpenClKernel : public OpenCLKernel {
|
||||
class ActivationOpenCLKernel : public OpenCLKernel {
|
||||
public:
|
||||
ActivationOpenClKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
ActivationOpenCLKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs)
|
||||
: OpenCLKernel(parameter, inputs, outputs),
|
||||
type_(reinterpret_cast<ActivationParameter *>(parameter)->type_),
|
||||
alpha_(reinterpret_cast<ActivationParameter *>(parameter)->alpha_) {}
|
||||
~ActivationOpenClKernel() override = default;
|
||||
~ActivationOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
int SetArgs();
|
||||
static std::string GetActTypeString(int act_type);
|
||||
cl::Kernel kernel_;
|
||||
int type_;
|
||||
float alpha_;
|
||||
|
|
|
@ -35,41 +35,111 @@ using mindspore::schema::PrimitiveType_Eltwise;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
std::vector<size_t> ArithmeticOpenCLKernel::InitGlobalSize() const {
|
||||
auto out_shape = out_tensors_[0]->shape();
|
||||
if (out_shape.size() == 2) {
|
||||
const size_t global_x = 1;
|
||||
const size_t global_y = 1;
|
||||
const size_t global_z = UP_ROUND_DIV(out_shape[1], C4NUM);
|
||||
std::vector<size_t> global = {global_x, global_y, global_z};
|
||||
return global;
|
||||
int ArithmeticOpenCLKernel::CheckSpecs() {
|
||||
auto *arithmetic_parameter = reinterpret_cast<const ArithmeticParameter *>(op_parameter_);
|
||||
if (arithmetic_parameter->broadcasting_) {
|
||||
element_flag_ = false;
|
||||
kernel_name_ = "BroadcastNHWC4";
|
||||
if (out_tensors_[0]->shape()[0] > 1) {
|
||||
MS_LOG(ERROR) << "Broadcasting don't support N > 1";
|
||||
return RET_ERROR;
|
||||
}
|
||||
} else {
|
||||
const size_t global_x = out_shape[2];
|
||||
const size_t global_y = out_shape[1];
|
||||
const size_t global_z = UP_ROUND_DIV(out_shape[3], C4NUM);
|
||||
std::vector<size_t> global = {global_x, global_y, global_z};
|
||||
return global;
|
||||
kernel_name_ = "Element";
|
||||
}
|
||||
|
||||
switch (op_parameter_->type_) {
|
||||
case PrimitiveType_Mul:
|
||||
kernel_name_ += "Mul";
|
||||
break;
|
||||
case PrimitiveType_Add:
|
||||
kernel_name_ += "Add";
|
||||
break;
|
||||
case PrimitiveType_Sub:
|
||||
kernel_name_ += "Sub";
|
||||
break;
|
||||
case PrimitiveType_Div:
|
||||
kernel_name_ += "Div";
|
||||
break;
|
||||
case PrimitiveType_LogicalAnd:
|
||||
kernel_name_ += "And";
|
||||
break;
|
||||
case PrimitiveType_LogicalOr:
|
||||
kernel_name_ += "Or";
|
||||
break;
|
||||
case PrimitiveType_Maximum:
|
||||
kernel_name_ += "Max";
|
||||
break;
|
||||
case PrimitiveType_Minimum:
|
||||
kernel_name_ += "Min";
|
||||
break;
|
||||
case PrimitiveType_FloorDiv:
|
||||
kernel_name_ += "FloorDiv";
|
||||
break;
|
||||
case PrimitiveType_FloorMod:
|
||||
kernel_name_ += "FloorMod";
|
||||
break;
|
||||
case PrimitiveType_SquaredDifference:
|
||||
kernel_name_ += "SquaredDifference";
|
||||
break;
|
||||
case PrimitiveType_Equal:
|
||||
kernel_name_ += "Equal";
|
||||
break;
|
||||
case PrimitiveType_NotEqual:
|
||||
kernel_name_ += "NotEqual";
|
||||
break;
|
||||
case PrimitiveType_Less:
|
||||
kernel_name_ += "Less";
|
||||
break;
|
||||
case PrimitiveType_LessEqual:
|
||||
kernel_name_ += "LessEqual";
|
||||
break;
|
||||
case PrimitiveType_Greater:
|
||||
kernel_name_ += "Greater";
|
||||
break;
|
||||
case PrimitiveType_GreaterEqual:
|
||||
kernel_name_ += "GreaterEqual";
|
||||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "Error Operator type " << op_parameter_->type_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
switch (arithmetic_parameter->activation_type_) {
|
||||
case schema::ActivationType_NO_ACTIVATION:
|
||||
break;
|
||||
case schema::ActivationType_RELU:
|
||||
activation_min_ = 0.f;
|
||||
break;
|
||||
case schema::ActivationType_RELU6:
|
||||
activation_min_ = 0.f;
|
||||
activation_max_ = 6.f;
|
||||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "Unsupported activation type " << arithmetic_parameter->activation_type_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
void ArithmeticOpenCLKernel::Image2dGetWorkGroupSize() {
|
||||
void ArithmeticOpenCLKernel::SetGlobalLocal() {
|
||||
if (element_flag_) {
|
||||
local_size_ = {16, 16};
|
||||
local_range_ = {};
|
||||
auto out_shape = out_tensors_[0]->shape();
|
||||
if (out_shape.size() == 2) {
|
||||
size_t H = out_shape[0];
|
||||
size_t W = UP_DIV(out_shape[1], C4NUM);
|
||||
global_size_ = {W, H};
|
||||
global_range_ = {W, H};
|
||||
} else {
|
||||
size_t H = out_shape[0] * out_shape[1];
|
||||
size_t W = out_shape[2] * UP_DIV(out_shape[3], C4NUM);
|
||||
global_size_ = {W, H};
|
||||
global_range_ = {W, H};
|
||||
}
|
||||
} else {
|
||||
local_size_ = {};
|
||||
local_range_ = {};
|
||||
auto out_shape = GetNHWCShape(out_tensors_[0]->shape());
|
||||
global_size_ = {static_cast<size_t>(UP_DIV(out_shape[3], C4NUM)), static_cast<size_t>(out_shape[2]),
|
||||
static_cast<size_t>(out_shape[1] * out_shape[0])};
|
||||
global_range_ = {static_cast<size_t>(UP_DIV(out_shape[3], C4NUM)), static_cast<size_t>(out_shape[2]),
|
||||
static_cast<size_t>(out_shape[1] * out_shape[0])};
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -137,7 +207,7 @@ int ArithmeticOpenCLKernel::InitWeights() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
int ArithmeticOpenCLKernel::SetArgs() {
|
||||
void ArithmeticOpenCLKernel::SetConstArgs() {
|
||||
int arg_idx = 3;
|
||||
if (!element_flag_) {
|
||||
cl_int4 input0_shape = {inputs_nhwc_shapes_[0][0], inputs_nhwc_shapes_[0][1], inputs_nhwc_shapes_[0][2],
|
||||
|
@ -157,124 +227,37 @@ int ArithmeticOpenCLKernel::SetArgs() {
|
|||
}
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, broadcastC_flag);
|
||||
} else {
|
||||
cl_int2 output_shape{static_cast<int>(global_size_[0]), static_cast<int>(global_size_[1])};
|
||||
cl_int2 output_shape{static_cast<int>(global_range_[0]), static_cast<int>(global_range_[1])};
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, output_shape);
|
||||
}
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, activation_min_);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, activation_max_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ArithmeticOpenCLKernel::Init() {
|
||||
std::string kernel_name;
|
||||
auto *arithmetic_parameter = reinterpret_cast<const ArithmeticParameter *>(op_parameter_);
|
||||
|
||||
if (arithmetic_parameter->broadcasting_) {
|
||||
element_flag_ = false;
|
||||
kernel_name = "BroadcastNHWC4";
|
||||
if (out_tensors_[0]->shape()[0] > 1) {
|
||||
MS_LOG(ERROR) << "Broadcasting don't support N > 1";
|
||||
return RET_ERROR;
|
||||
}
|
||||
} else {
|
||||
kernel_name = "Element";
|
||||
}
|
||||
|
||||
switch (op_parameter_->type_) {
|
||||
case PrimitiveType_Mul:
|
||||
kernel_name += "Mul";
|
||||
break;
|
||||
case PrimitiveType_Add:
|
||||
kernel_name += "Add";
|
||||
break;
|
||||
case PrimitiveType_Sub:
|
||||
kernel_name += "Sub";
|
||||
break;
|
||||
case PrimitiveType_Div:
|
||||
kernel_name += "Div";
|
||||
break;
|
||||
case PrimitiveType_LogicalAnd:
|
||||
kernel_name += "And";
|
||||
break;
|
||||
case PrimitiveType_LogicalOr:
|
||||
kernel_name += "Or";
|
||||
break;
|
||||
case PrimitiveType_Maximum:
|
||||
kernel_name += "Max";
|
||||
break;
|
||||
case PrimitiveType_Minimum:
|
||||
kernel_name += "Min";
|
||||
break;
|
||||
case PrimitiveType_FloorDiv:
|
||||
kernel_name += "FloorDiv";
|
||||
break;
|
||||
case PrimitiveType_FloorMod:
|
||||
kernel_name += "FloorMod";
|
||||
break;
|
||||
case PrimitiveType_SquaredDifference:
|
||||
kernel_name += "SquaredDifference";
|
||||
break;
|
||||
case PrimitiveType_Equal:
|
||||
kernel_name += "Equal";
|
||||
break;
|
||||
case PrimitiveType_NotEqual:
|
||||
kernel_name += "NotEqual";
|
||||
break;
|
||||
case PrimitiveType_Less:
|
||||
kernel_name += "Less";
|
||||
break;
|
||||
case PrimitiveType_LessEqual:
|
||||
kernel_name += "LessEqual";
|
||||
break;
|
||||
case PrimitiveType_Greater:
|
||||
kernel_name += "Greater";
|
||||
break;
|
||||
case PrimitiveType_GreaterEqual:
|
||||
kernel_name += "GreaterEqual";
|
||||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "Error Operator type " << op_parameter_->type_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
switch (arithmetic_parameter->activation_type_) {
|
||||
case schema::ActivationType_NO_ACTIVATION:
|
||||
break;
|
||||
case schema::ActivationType_RELU:
|
||||
activation_min_ = 0.f;
|
||||
break;
|
||||
case schema::ActivationType_RELU6:
|
||||
activation_min_ = 0.f;
|
||||
activation_max_ = 6.f;
|
||||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "Unsupported activation type " << arithmetic_parameter->activation_type_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
int ArithmeticOpenCLKernel::Prepare() {
|
||||
lite::STATUS error_code = RET_OK;
|
||||
#ifdef PROGRAM_WITH_IL
|
||||
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
||||
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name_);
|
||||
#else
|
||||
if (out_mem_type_ == MemType::IMG) {
|
||||
kernel_name += "_IMG";
|
||||
kernel_name_ += "_IMG";
|
||||
} else {
|
||||
kernel_name += "_BUF";
|
||||
kernel_name_ += "_BUF";
|
||||
}
|
||||
std::string program_name = "Arithmetic";
|
||||
std::set<std::string> build_options;
|
||||
std::string source = arithmetic_source;
|
||||
ocl_runtime_->LoadSource(program_name, source);
|
||||
error_code = ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
error_code = ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name_, build_options);
|
||||
#endif
|
||||
if (error_code != RET_OK) {
|
||||
return error_code;
|
||||
}
|
||||
|
||||
Image2dGetWorkGroupSize();
|
||||
SetGlobalLocal();
|
||||
InitWeights();
|
||||
SetArgs();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
SetConstArgs();
|
||||
MS_LOG(DEBUG) << kernel_name_ << " Init Done!";
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -287,64 +270,44 @@ int ArithmeticOpenCLKernel::Run() {
|
|||
auto input_1_ptr = inputs_weight_ptrs_[1] == nullptr ? in_tensors_[1]->data_c() : inputs_weight_ptrs_[1];
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, input_1_ptr);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->RunKernel(kernel_, global_size_, local_size_, nullptr);
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLArithmeticKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel =
|
||||
new (std::nothrow) ArithmeticOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Create OpenCL Arithmetic kernel failed!";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: Arithmetic";
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Mul, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Add, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Sub, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Div, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_LogicalAnd, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_LogicalOr, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Maximum, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Minimum, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FloorDiv, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FloorMod, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_SquaredDifference, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Equal, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_NotEqual, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Less, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_LessEqual, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Greater, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_GreaterEqual, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Eltwise, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Mul, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Add, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Sub, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Div, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_LogicalAnd, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_LogicalOr, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Maximum, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Minimum, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_FloorDiv, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_FloorMod, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_SquaredDifference, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Equal, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_NotEqual, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Less, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_LessEqual, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Greater, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_GreaterEqual, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Eltwise, OpenCLArithmeticKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Mul, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Add, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Sub, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Div, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_LogicalAnd, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_LogicalOr, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Maximum, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Minimum, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FloorDiv, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FloorMod, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_SquaredDifference, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Equal, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_NotEqual, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Less, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_LessEqual, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Greater, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_GreaterEqual, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Eltwise, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Mul, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Add, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Sub, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Div, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_LogicalAnd, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_LogicalOr, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Maximum, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Minimum, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_FloorDiv, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_FloorMod, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_SquaredDifference, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Equal, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_NotEqual, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Less, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_LessEqual, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Greater, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_GreaterEqual, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Eltwise, OpenCLKernelCreator<ArithmeticOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_ARITHMETIC_H_
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "src/runtime/kernel/arm/fp32/arithmetic_fp32.h"
|
||||
#include "src/runtime/kernel/opencl/opencl_kernel.h"
|
||||
|
||||
|
@ -30,24 +31,21 @@ class ArithmeticOpenCLKernel : public OpenCLKernel {
|
|||
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||
~ArithmeticOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
int InitWeights() override;
|
||||
int SetArgs();
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
std::vector<size_t> InitGlobalSize() const;
|
||||
void Image2dGetWorkGroupSize();
|
||||
|
||||
cl::Kernel kernel_;
|
||||
bool element_flag_{true};
|
||||
float activation_min_{-FLT_MAX};
|
||||
float activation_max_{FLT_MAX};
|
||||
std::vector<std::vector<int>> inputs_nhwc_shapes_;
|
||||
std::vector<void *> inputs_weight_ptrs_;
|
||||
|
||||
std::vector<size_t> local_size_;
|
||||
std::vector<size_t> global_size_;
|
||||
std::string kernel_name_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -31,13 +31,17 @@ using mindspore::schema::PrimitiveType_DeConv2D;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int Conv2dTransposeOpenCLKernel::Init() {
|
||||
int Conv2dTransposeOpenCLKernel::CheckSpecs() {
|
||||
ConvParameter *param = reinterpret_cast<ConvParameter *>(op_parameter_);
|
||||
if (param->pad_l_ != param->pad_r_ || param->kernel_h_ - param->stride_h_ != 2 * param->pad_l_ ||
|
||||
param->pad_u_ != param->pad_d_ || param->kernel_w_ - param->stride_w_ != 2 * param->pad_u_) {
|
||||
MS_LOG(ERROR) << "only support kernel - stride == 2 * pad";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int Conv2dTransposeOpenCLKernel::Prepare() {
|
||||
std::string kernel_name = "conv2d_transpose_NHWC4";
|
||||
enable_fp16_ = ocl_runtime_->GetFp16Enable();
|
||||
#ifdef PROGRAM_WITH_IL
|
||||
|
@ -49,12 +53,56 @@ int Conv2dTransposeOpenCLKernel::Init() {
|
|||
ocl_runtime_->LoadSource(program_name, source);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
PadWeight();
|
||||
InitWeights();
|
||||
SetGlobalLocal();
|
||||
SetConstArgs();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
void Conv2dTransposeOpenCLKernel::PadWeight() {
|
||||
void Conv2dTransposeOpenCLKernel::SetGlobalLocal() {
|
||||
ConvParameter *param = reinterpret_cast<ConvParameter *>(op_parameter_);
|
||||
int co = out_tensors_[0]->shape()[3];
|
||||
int co4 = UP_DIV(co, C4NUM);
|
||||
int stride_h = param->stride_h_;
|
||||
int stride_w = param->stride_w_;
|
||||
int oh = out_tensors_[0]->shape()[1];
|
||||
int ow = out_tensors_[0]->shape()[2];
|
||||
local_size_ = {16, 1, 16};
|
||||
global_size_ = {(size_t)UP_ROUND(oh / 2, stride_h), (size_t)UP_ROUND(ow / 2, stride_w), (size_t)co4};
|
||||
AlignGlobalLocal(global_size_, local_size_);
|
||||
}
|
||||
|
||||
void Conv2dTransposeOpenCLKernel::SetConstArgs() {
|
||||
int arg_cnt = 2;
|
||||
ConvParameter *param = reinterpret_cast<ConvParameter *>(op_parameter_);
|
||||
int ci = in_tensors_[0]->shape()[3];
|
||||
int co = out_tensors_[0]->shape()[3];
|
||||
int kh = param->kernel_h_;
|
||||
int kw = param->kernel_w_;
|
||||
int pad_h = param->pad_l_;
|
||||
int pad_w = param->pad_u_;
|
||||
int stride_h = param->stride_h_;
|
||||
int stride_w = param->stride_w_;
|
||||
int oh = out_tensors_[0]->shape()[1];
|
||||
int ow = out_tensors_[0]->shape()[2];
|
||||
int h = in_tensors_[0]->shape()[1];
|
||||
int w = in_tensors_[0]->shape()[2];
|
||||
cl_int2 kernel_size = {kh, kw};
|
||||
cl_int2 stride = {stride_h, stride_w};
|
||||
cl_int2 padding = {pad_h, pad_w};
|
||||
cl_int4 src_size = {h, w, UP_DIV(ci, C4NUM), 1};
|
||||
cl_int4 dst_size = {oh, ow, UP_DIV(co, C4NUM), 1};
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, padWeight_, lite::opencl::MemType::BUF);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, bias_);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, kernel_size);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, stride);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, padding);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, src_size);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, dst_size);
|
||||
}
|
||||
|
||||
int Conv2dTransposeOpenCLKernel::InitWeights() {
|
||||
ConvParameter *param = reinterpret_cast<ConvParameter *>(op_parameter_);
|
||||
int ci = in_tensors_[0]->shape()[3];
|
||||
int co = out_tensors_[0]->shape()[3];
|
||||
|
@ -138,67 +186,18 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
|
|||
}
|
||||
}
|
||||
allocator->UnmapBuffer(bias_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int Conv2dTransposeOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
ConvParameter *param = reinterpret_cast<ConvParameter *>(op_parameter_);
|
||||
int ci = in_tensors_[0]->shape()[3];
|
||||
int co = out_tensors_[0]->shape()[3];
|
||||
int co4 = UP_DIV(co, C4NUM);
|
||||
int kh = param->kernel_h_;
|
||||
int kw = param->kernel_w_;
|
||||
int pad_h = param->pad_l_;
|
||||
int pad_w = param->pad_u_;
|
||||
int stride_h = param->stride_h_;
|
||||
int stride_w = param->stride_w_;
|
||||
int oh = out_tensors_[0]->shape()[1];
|
||||
int ow = out_tensors_[0]->shape()[2];
|
||||
int h = in_tensors_[0]->shape()[1];
|
||||
int w = in_tensors_[0]->shape()[2];
|
||||
// local size should less than MAX_GROUP_SIZE
|
||||
std::vector<size_t> local = {16, 1, 16};
|
||||
std::vector<size_t> global = {(size_t)UP_ROUND(oh / 2, stride_h), (size_t)UP_ROUND(ow / 2, stride_w), (size_t)co4};
|
||||
|
||||
cl_int2 kernel_size = {kh, kw};
|
||||
cl_int2 stride = {stride_h, stride_w};
|
||||
cl_int2 padding = {pad_h, pad_w};
|
||||
cl_int4 src_size = {h, w, UP_DIV(ci, C4NUM), 1};
|
||||
cl_int4 dst_size = {oh, ow, UP_DIV(co, C4NUM), 1};
|
||||
int arg_cnt = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, padWeight_, lite::opencl::MemType::BUF);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, bias_);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, kernel_size);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, stride);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, padding);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, src_size);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_cnt++, dst_size);
|
||||
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLConv2dTransposeKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::InnerContext *ctx,
|
||||
const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel =
|
||||
new (std::nothrow) Conv2dTransposeOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != mindspore::lite::RET_OK) {
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_DeConv2D, OpenCLConv2dTransposeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_DeConv2D, OpenCLConv2dTransposeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_DeConv2D, OpenCLKernelCreator<Conv2dTransposeOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_DeConv2D, OpenCLKernelCreator<Conv2dTransposeOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -32,12 +32,14 @@ class Conv2dTransposeOpenCLKernel : public OpenCLKernel {
|
|||
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||
~Conv2dTransposeOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
int InitWeights() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
void PadWeight();
|
||||
|
||||
cl::Kernel kernel_;
|
||||
void *padWeight_{nullptr};
|
||||
void *bias_{nullptr};
|
||||
|
|
|
@ -34,7 +34,11 @@ using mindspore::schema::PrimitiveType_FullConnection;
|
|||
namespace mindspore::kernel {
|
||||
|
||||
int FullConnectionOpenCLKernel::Init() {
|
||||
std::string kernel_name = "FullConnection_NHWC4";
|
||||
// deleted soon
|
||||
return CheckSpecs();
|
||||
}
|
||||
|
||||
int FullConnectionOpenCLKernel::CheckSpecs() {
|
||||
auto param = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
||||
transposeA = param->a_transpose_;
|
||||
if (transposeA) {
|
||||
|
@ -48,9 +52,6 @@ int FullConnectionOpenCLKernel::Init() {
|
|||
MS_LOG(ERROR) << "fullconnection only support input output shape size = 2 or 4";
|
||||
return RET_ERROR;
|
||||
}
|
||||
// call default move constructor(elemwised moved)
|
||||
inShape = Image2DInfo(in_tensors_[0]);
|
||||
outShape = Image2DInfo(out_tensors_[0]);
|
||||
switch (param->act_type_) {
|
||||
case ActType_No:
|
||||
break;
|
||||
|
@ -65,6 +66,13 @@ int FullConnectionOpenCLKernel::Init() {
|
|||
MS_LOG(ERROR) << "Unsupported activation type " << param->act_type_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int FullConnectionOpenCLKernel::Prepare() {
|
||||
std::string kernel_name = "FullConnection_NHWC4";
|
||||
inShape = Image2DInfo(in_tensors_[0]);
|
||||
outShape = Image2DInfo(out_tensors_[0]);
|
||||
#ifdef PROGRAM_WITH_IL
|
||||
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
||||
#else
|
||||
|
@ -74,13 +82,14 @@ int FullConnectionOpenCLKernel::Init() {
|
|||
ocl_runtime_->LoadSource(program_name, source);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
|
||||
PadWeight();
|
||||
InitWeights();
|
||||
SetConstArgs();
|
||||
SetGlobalLocal();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
void FullConnectionOpenCLKernel::PadWeight() {
|
||||
int FullConnectionOpenCLKernel::InitWeights() {
|
||||
auto allocator = ocl_runtime_->GetAllocator();
|
||||
int ci = inShape.C;
|
||||
int ci4 = UP_DIV(ci, C4NUM);
|
||||
|
@ -167,48 +176,37 @@ void FullConnectionOpenCLKernel::PadWeight() {
|
|||
}
|
||||
}
|
||||
allocator->UnmapBuffer(bias_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int FullConnectionOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
void FullConnectionOpenCLKernel::SetGlobalLocal() {
|
||||
std::vector<size_t> local = {32, 4, 1};
|
||||
std::vector<size_t> global = {UP_DIV(outShape.C, C4NUM), 4, outShape.N};
|
||||
int arg_count = 0;
|
||||
AlignGlobalLocal(global, local);
|
||||
}
|
||||
|
||||
void FullConnectionOpenCLKernel::SetConstArgs() {
|
||||
int arg_count = 2;
|
||||
cl_int4 in_shape = {static_cast<int>(inShape.N), static_cast<int>(inShape.H), static_cast<int>(inShape.W),
|
||||
static_cast<int>(inShape.C)};
|
||||
cl_int2 out_shape = {static_cast<int>(outShape.N), static_cast<int>(outShape.C)};
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, padWeight_, lite::opencl::MemType::BUF);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, bias_);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_shape);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_shape);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, activation_min_);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, activation_max_);
|
||||
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
||||
}
|
||||
|
||||
int FullConnectionOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
int arg_count = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLFullConnectionKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::InnerContext *ctx,
|
||||
const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel =
|
||||
new (std::nothrow) FullConnectionOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FullConnection, OpenCLFullConnectionKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_FullConnection, OpenCLFullConnectionKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FullConnection, OpenCLKernelCreator<FullConnectionOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_FullConnection, OpenCLKernelCreator<FullConnectionOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -31,12 +31,15 @@ class FullConnectionOpenCLKernel : public OpenCLKernel {
|
|||
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||
~FullConnectionOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
int InitWeights() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
int Init() override;
|
||||
|
||||
private:
|
||||
void PadWeight();
|
||||
|
||||
cl::Kernel kernel_;
|
||||
void *padWeight_{nullptr};
|
||||
void *bias_{nullptr};
|
||||
|
|
|
@ -30,8 +30,7 @@ using mindspore::schema::PrimitiveType_MatMul;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int MatMulOpenCLKernel::Init() {
|
||||
std::string kernel_name = "MatMul_NHWC4";
|
||||
int MatMulOpenCLKernel::CheckSpecs() {
|
||||
auto param = reinterpret_cast<MatMulParameter *>(op_parameter_);
|
||||
transposeA = param->a_transpose_;
|
||||
if (transposeA) {
|
||||
|
@ -45,6 +44,11 @@ int MatMulOpenCLKernel::Init() {
|
|||
MS_LOG(ERROR) << "matmul only support input shape size=2 or 4.";
|
||||
return mindspore::lite::RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int MatMulOpenCLKernel::Prepare() {
|
||||
std::string kernel_name = "MatMul_NHWC4";
|
||||
dims = in_tensors_[0]->shape().size();
|
||||
for (int i = 0; i < dims; i++) {
|
||||
inShape[MAX_DIMS - dims + i] = in_tensors_[0]->shape()[i];
|
||||
|
@ -61,13 +65,14 @@ int MatMulOpenCLKernel::Init() {
|
|||
ocl_runtime_->LoadSource(program_name, source);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
|
||||
PadWeight();
|
||||
InitWeights();
|
||||
SetConstArgs();
|
||||
SetGlobalLocal();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
void MatMulOpenCLKernel::PadWeight() {
|
||||
int MatMulOpenCLKernel::InitWeights() {
|
||||
// ABMCI @ ABCICO = ABMCO
|
||||
auto allocator = ocl_runtime_->GetAllocator();
|
||||
int ci = inShape[3];
|
||||
|
@ -128,45 +133,36 @@ void MatMulOpenCLKernel::PadWeight() {
|
|||
}
|
||||
}
|
||||
allocator->UnmapBuffer(padWeight_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int MatMulOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
void MatMulOpenCLKernel::SetGlobalLocal() {
|
||||
// local size should less than MAX_GROUP_SIZE
|
||||
std::vector<size_t> local = {32, 4, 1};
|
||||
std::vector<size_t> global = {UP_DIV(static_cast<size_t>(outShape[3]), C4NUM),
|
||||
4 * static_cast<size_t>(outShape[0]) * static_cast<size_t>(outShape[1]),
|
||||
static_cast<size_t>(outShape[2])};
|
||||
int arg_count = 0;
|
||||
AlignGlobalLocal(global, local);
|
||||
}
|
||||
|
||||
void MatMulOpenCLKernel::SetConstArgs() {
|
||||
int arg_count = 2;
|
||||
cl_int4 in_shape = {inShape[0], inShape[1], inShape[2], inShape[3]};
|
||||
cl_int4 out_shape = {outShape[0], outShape[1], outShape[2], outShape[3]};
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, padWeight_, lite::opencl::MemType::BUF);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_shape);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_shape);
|
||||
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
||||
}
|
||||
|
||||
int MatMulOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
int arg_count = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_count++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLMatMulKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel = new (std::nothrow) MatMulOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != mindspore::lite::RET_OK) {
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_MatMul, OpenCLMatMulKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_MatMul, OpenCLMatMulKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_MatMul, OpenCLKernelCreator<MatMulOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_MatMul, OpenCLKernelCreator<MatMulOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -31,12 +31,14 @@ class MatMulOpenCLKernel : public OpenCLKernel {
|
|||
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||
~MatMulOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
int InitWeights() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
void PadWeight();
|
||||
|
||||
cl::Kernel kernel_;
|
||||
void *padWeight_{nullptr};
|
||||
bool enable_fp16_{false};
|
||||
|
|
|
@ -21,8 +21,7 @@
|
|||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/kernel/opencl/utils.h"
|
||||
#ifndef PROGRAM_WITH_IL
|
||||
#include "src/runtime/kernel/opencl/cl/avg_pool2d.cl.inc"
|
||||
#include "src/runtime/kernel/opencl/cl/max_pool2d.cl.inc"
|
||||
#include "src/runtime/kernel/opencl/cl/pooling2d.cl.inc"
|
||||
#endif
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kGPU;
|
||||
|
@ -36,27 +35,25 @@ using mindspore::schema::PrimitiveType_Pooling;
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
int PoolingOpenCLKernel::Init() {
|
||||
|
||||
int PoolingOpenCLKernel::CheckSpecs() {
|
||||
if (parameter_->pool_mode_ != PoolMode_MaxPool && parameter_->pool_mode_ != PoolMode_AvgPool) {
|
||||
MS_LOG(ERROR) << "Init `Pooling2d` kernel failed, unsupported pool mode!";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (parameter_->act_type_ != ActType_No && parameter_->act_type_ != ActType_Relu) {
|
||||
MS_LOG(ERROR) << "Unsupported activation type " << parameter_->act_type_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PoolingOpenCLKernel::Prepare() {
|
||||
std::string kernel_name;
|
||||
#ifndef PROGRAM_WITH_IL
|
||||
std::string source;
|
||||
std::string program_name;
|
||||
#endif
|
||||
if (parameter_->pool_mode_ == PoolMode_MaxPool) {
|
||||
kernel_name = "MaxPooling2d";
|
||||
#ifndef PROGRAM_WITH_IL
|
||||
source = max_pool2d_source;
|
||||
program_name = "MaxPooling2d";
|
||||
#endif
|
||||
} else if (parameter_->pool_mode_ == PoolMode_AvgPool) {
|
||||
kernel_name = "AvgPooling2d";
|
||||
#ifndef PROGRAM_WITH_IL
|
||||
source = avg_pool2d_source;
|
||||
program_name = "AvgPooling2d";
|
||||
#endif
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Init `Pooling2d` kernel failed!";
|
||||
return RET_INVALID_OP_NAME;
|
||||
}
|
||||
switch (parameter_->act_type_) {
|
||||
case ActType_No:
|
||||
|
@ -66,42 +63,35 @@ int PoolingOpenCLKernel::Init() {
|
|||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "Unsupported activation type " << parameter_->act_type_;
|
||||
return RET_ERROR;
|
||||
break;
|
||||
}
|
||||
enable_fp16_ = ocl_runtime_->GetFp16Enable();
|
||||
#ifdef PROGRAM_WITH_IL
|
||||
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
||||
#else
|
||||
kernel_name += "_NHWC4";
|
||||
if (out_mem_type_ == MemType::BUF) {
|
||||
MS_LOG(ERROR) << "buffer output not support yet.";
|
||||
return mindspore::lite::RET_ERROR;
|
||||
} else {
|
||||
kernel_name += "_IMG";
|
||||
}
|
||||
kernel_name += "_IMG";
|
||||
std::set<std::string> build_options;
|
||||
std::string source = pooling2d_source;
|
||||
std::string program_name = "Pooling2d";
|
||||
ocl_runtime_->LoadSource(program_name, source);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
InitGlobalSize();
|
||||
SetConstArgs();
|
||||
SetGlobalLocal();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
void PoolingOpenCLKernel::InitGlobalSize() {
|
||||
void PoolingOpenCLKernel::SetGlobalLocal() {
|
||||
const size_t global_x = out_tensors_[0]->shape()[1];
|
||||
const size_t global_y = out_tensors_[0]->shape()[2];
|
||||
const size_t global_z = UP_DIV(out_tensors_[0]->shape()[3], C4NUM);
|
||||
global_size_ = {global_z, global_y, global_x};
|
||||
int max_work_group_size = ocl_runtime_->GetKernelMaxWorkGroupSize(kernel_(), (*ocl_runtime_->Device())());
|
||||
local_size_ = GetCommonLocalSize(global_size_, max_work_group_size);
|
||||
global_size_ = GetCommonGlobalSize(local_size_, global_size_);
|
||||
global_range_ = {global_z, global_y, global_x};
|
||||
local_range_ = {};
|
||||
}
|
||||
|
||||
int PoolingOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
|
||||
void PoolingOpenCLKernel::SetConstArgs() {
|
||||
int slices = UP_DIV(out_tensors_[0]->shape()[3], C4NUM);
|
||||
cl_int4 input_shape = {in_tensors_[0]->shape()[1], in_tensors_[0]->shape()[2], in_tensors_[0]->shape()[3], slices};
|
||||
cl_int4 output_shape = {out_tensors_[0]->shape()[1], out_tensors_[0]->shape()[2], out_tensors_[0]->shape()[3],
|
||||
|
@ -109,40 +99,24 @@ int PoolingOpenCLKernel::Run() {
|
|||
cl_int2 stride = {parameter_->stride_h_, parameter_->stride_w_};
|
||||
cl_int2 kernel_size = {parameter_->window_h_, parameter_->window_w_};
|
||||
cl_int2 padding = {parameter_->pad_u_, parameter_->pad_l_};
|
||||
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
int arg_idx = 2;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, input_shape);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, output_shape);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, stride);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, kernel_size);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, padding);
|
||||
}
|
||||
|
||||
ocl_runtime_->RunKernel(kernel_, global_size_, local_size_, nullptr);
|
||||
int PoolingOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLPooling2dKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel = new (std::nothrow) PoolingOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Create OpenCL Pooling kernel failed!";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (RET_OK != ret) {
|
||||
MS_LOG(ERROR) << "Init OpenCL Pooling kernel failed!";
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Pooling, OpenCLPooling2dKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Pooling, OpenCLPooling2dKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Pooling, OpenCLKernelCreator<PoolingOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Pooling, OpenCLKernelCreator<PoolingOpenCLKernel>)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -31,14 +31,15 @@ class PoolingOpenCLKernel : public OpenCLKernel {
|
|||
: OpenCLKernel(parameter, inputs, outputs), parameter_(reinterpret_cast<PoolingParameter *>(parameter)) {}
|
||||
~PoolingOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
void InitGlobalSize();
|
||||
PoolingParameter *parameter_;
|
||||
cl::Kernel kernel_;
|
||||
bool enable_fp16_{false};
|
||||
std::vector<size_t> local_size_;
|
||||
std::vector<size_t> global_size_;
|
||||
};
|
||||
|
|
|
@ -40,14 +40,19 @@ using mindspore::schema::ReduceMode_ReduceSumSquare;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int ReduceOpenCLKernel::Init() {
|
||||
InitNHWCShape();
|
||||
auto reduce_param = reinterpret_cast<ReduceParameter *>(op_parameter_);
|
||||
if (reduce_param == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
std::string ReduceOpenCLKernel::GetReduceTypeStr(int type) {
|
||||
static const std::map<int, std::string> reduce_type2str{{ReduceMode_ReduceMean, "mean"},
|
||||
{ReduceMode_ReduceSum, "sum"}};
|
||||
auto result_iter = reduce_type2str.find(type);
|
||||
if (result_iter != reduce_type2str.end()) {
|
||||
return result_iter->second;
|
||||
}
|
||||
std::map<int, std::string> reduce_type2str{{ReduceMode_ReduceMean, "mean"}, {ReduceMode_ReduceSum, "sum"}};
|
||||
if (reduce_type2str.find(reduce_param->mode_) == reduce_type2str.end()) {
|
||||
return "";
|
||||
}
|
||||
|
||||
int ReduceOpenCLKernel::CheckSpecs() {
|
||||
auto reduce_param = reinterpret_cast<ReduceParameter *>(op_parameter_);
|
||||
if (GetReduceTypeStr(reduce_param->mode_).empty()) {
|
||||
MS_LOG(ERROR) << "not supported reduce type:" << reduce_param->mode_;
|
||||
return RET_PARAM_INVALID;
|
||||
}
|
||||
|
@ -67,7 +72,17 @@ int ReduceOpenCLKernel::Init() {
|
|||
MS_LOG(ERROR) << "reduce axis (2,3) should keep dims";
|
||||
return RET_PARAM_INVALID;
|
||||
}
|
||||
std::string kernel_name = reduce_type2str.at(reduce_param->mode_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ReduceOpenCLKernel::Prepare() {
|
||||
outShape = Image2DInfo(out_tensors_[0]);
|
||||
auto reduce_param = reinterpret_cast<ReduceParameter *>(op_parameter_);
|
||||
if (reduce_param == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
std::string kernel_name = GetReduceTypeStr(reduce_param->mode_);
|
||||
if (wc_reduce_) {
|
||||
kernel_name += "_WC";
|
||||
}
|
||||
|
@ -77,7 +92,6 @@ int ReduceOpenCLKernel::Init() {
|
|||
kernel_name += "_local";
|
||||
}
|
||||
kernel_name += "_NHWC4";
|
||||
enable_fp16_ = ocl_runtime_->GetFp16Enable();
|
||||
|
||||
#ifdef PROGRAM_WITH_IL
|
||||
kernel_ = ocl_runtime_->GetKernelFromBinary(kernel_name);
|
||||
|
@ -88,32 +102,26 @@ int ReduceOpenCLKernel::Init() {
|
|||
ocl_runtime_->LoadSource(program_name, source);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
SetConstArgs();
|
||||
SetGlobalLocal();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
void ReduceOpenCLKernel::InitNHWCShape() {
|
||||
std::vector<int> shapex = out_tensors_[0]->shape();
|
||||
size_t n = 1, h = 1, w = 1, c = 1;
|
||||
if (shapex.size() == 2) {
|
||||
n = shapex[0];
|
||||
c = shapex[1];
|
||||
} else if (shapex.size() == 4) {
|
||||
n = shapex[0];
|
||||
h = shapex[1];
|
||||
w = shapex[2];
|
||||
c = shapex[3];
|
||||
}
|
||||
nhwc_shape_ = {n, h, w, c};
|
||||
}
|
||||
|
||||
int ReduceOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
void ReduceOpenCLKernel::SetConstArgs() {
|
||||
std::vector<int> shapex = in_tensors_[0]->shape();
|
||||
int h = shapex[1];
|
||||
int w = shapex[2];
|
||||
int c = shapex[3];
|
||||
int c4 = UP_DIV(c, C4NUM);
|
||||
cl_int4 size = {h, w, c4, c};
|
||||
int arg_idx = 2;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, size);
|
||||
}
|
||||
void ReduceOpenCLKernel::SetGlobalLocal() {
|
||||
std::vector<int> shapex = in_tensors_[0]->shape();
|
||||
int h = shapex[1];
|
||||
int c = shapex[3];
|
||||
int c4 = UP_DIV(c, C4NUM);
|
||||
std::vector<size_t> local = {};
|
||||
if (use_local_) {
|
||||
local = {1, LOCAL_CACHE_THREAD, LOCAL_CACHE_THREAD};
|
||||
|
@ -122,35 +130,20 @@ int ReduceOpenCLKernel::Run() {
|
|||
if (wc_reduce_) {
|
||||
global = {static_cast<size_t>(h), 1, 1};
|
||||
}
|
||||
cl_int4 size = {h, w, c4, c};
|
||||
AlignGlobalLocal(global, local);
|
||||
}
|
||||
|
||||
int ReduceOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, size);
|
||||
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLReduceKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel = new (std::nothrow) ReduceOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << " create failed.";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != mindspore::lite::RET_OK) {
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Mean, OpenCLReduceKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Mean, OpenCLReduceKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Reduce, OpenCLReduceKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Reduce, OpenCLReduceKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Mean, OpenCLKernelCreator<ReduceOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Mean, OpenCLKernelCreator<ReduceOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Reduce, OpenCLKernelCreator<ReduceOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Reduce, OpenCLKernelCreator<ReduceOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_REDUCE_H_
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <string>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/opencl/opencl_kernel.h"
|
||||
#include "nnacl/reduce_parameter.h"
|
||||
|
@ -31,14 +31,16 @@ class ReduceOpenCLKernel : public OpenCLKernel {
|
|||
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||
~ReduceOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
void InitNHWCShape();
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
static std::string GetReduceTypeStr(int type);
|
||||
cl::Kernel kernel_;
|
||||
bool enable_fp16_{false};
|
||||
std::vector<size_t> nhwc_shape_;
|
||||
Image2DInfo outShape = Image2DInfo(nullptr);
|
||||
bool use_local_{false};
|
||||
bool wc_reduce_{false};
|
||||
static const size_t LOCAL_CACHE_THREAD{16};
|
||||
|
|
|
@ -32,7 +32,6 @@ class ReshapeOpenCLKernel : public OpenCLKernel {
|
|||
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
|
||||
int CheckSpecs() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
|
|
@ -32,27 +32,32 @@ using mindspore::schema::PrimitiveType_Resize;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int ResizeOpenCLKernel::Init() {
|
||||
auto resize_param = reinterpret_cast<ResizeParameter *>(op_parameter_);
|
||||
if (resize_param == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
alignCorner = resize_param->align_corners_;
|
||||
preserveAspectRatio = resize_param->preserve_aspect_ratio_;
|
||||
int ResizeOpenCLKernel::CheckSpecs() {
|
||||
auto in_shape = in_tensors_[0]->shape();
|
||||
auto out_shape = out_tensors_[0]->shape();
|
||||
if (in_shape.size() != 4 || out_shape.size() != 4 || in_shape[0] != out_shape[0] || in_shape[3] != out_shape[3]) {
|
||||
MS_LOG(ERROR) << "resize op only support 4D and axes HW";
|
||||
return RET_PARAM_INVALID;
|
||||
}
|
||||
auto resize_param = reinterpret_cast<ResizeParameter *>(op_parameter_);
|
||||
if (resize_param->method_ != schema::ResizeMethod_LINEAR && resize_param->method_ != schema::ResizeMethod_NEAREST) {
|
||||
MS_LOG(ERROR) << "unsupported resize method:" << resize_param->method_;
|
||||
return RET_PARAM_INVALID;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ResizeOpenCLKernel::Prepare() {
|
||||
auto resize_param = reinterpret_cast<ResizeParameter *>(op_parameter_);
|
||||
alignCorner = resize_param->align_corners_;
|
||||
preserveAspectRatio = resize_param->preserve_aspect_ratio_;
|
||||
auto in_shape = in_tensors_[0]->shape();
|
||||
auto out_shape = out_tensors_[0]->shape();
|
||||
std::string kernel_name = "resize";
|
||||
if (resize_param->method_ == schema::ResizeMethod_LINEAR) {
|
||||
kernel_name += "_bilinear";
|
||||
} else if (resize_param->method_ == schema::ResizeMethod_NEAREST) {
|
||||
kernel_name += "_nearest_neighbor";
|
||||
} else {
|
||||
MS_LOG(ERROR) << "unsupported resize method:" << resize_param->method_;
|
||||
return RET_PARAM_INVALID;
|
||||
}
|
||||
kernel_name += "_NHWC4";
|
||||
#ifdef PROGRAM_WITH_IL
|
||||
|
@ -64,6 +69,8 @@ int ResizeOpenCLKernel::Init() {
|
|||
ocl_runtime_->LoadSource(program_name, source);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
SetConstArgs();
|
||||
SetGlobalLocal();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return RET_OK;
|
||||
}
|
||||
|
@ -74,8 +81,7 @@ float ResizeOpenCLKernel::getResizeScaleFactor(int input_size, int output_size)
|
|||
: static_cast<float>(input_size) / static_cast<float>(output_size);
|
||||
}
|
||||
|
||||
int ResizeOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
void ResizeOpenCLKernel::SetConstArgs() {
|
||||
auto in_shape = in_tensors_[0]->shape();
|
||||
auto out_shape = out_tensors_[0]->shape();
|
||||
int n = out_shape[0];
|
||||
|
@ -85,39 +91,30 @@ int ResizeOpenCLKernel::Run() {
|
|||
int c4 = UP_DIV(c, C4NUM);
|
||||
float scale_h = getResizeScaleFactor(in_tensors_[0]->shape()[1], out_tensors_[0]->shape()[1]);
|
||||
float scale_w = getResizeScaleFactor(in_tensors_[0]->shape()[2], out_tensors_[0]->shape()[2]);
|
||||
std::vector<size_t> local = {};
|
||||
std::vector<size_t> global = {static_cast<size_t>(c4), static_cast<size_t>(w), static_cast<size_t>(h)};
|
||||
cl_int4 in_size = {in_shape[0], in_shape[1], in_shape[2], UP_DIV(in_shape[3], C4NUM)};
|
||||
cl_int4 out_size = {n, h, w, c4};
|
||||
cl_float2 scale = {scale_h, scale_w};
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
int arg_idx = 2;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_size);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_size);
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, scale);
|
||||
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
||||
}
|
||||
|
||||
void ResizeOpenCLKernel::SetGlobalLocal() {
|
||||
local_range_ = {};
|
||||
auto out_shape = Image2DInfo(out_tensors_[0]);
|
||||
global_range_ = {out_shape.Slice, out_shape.W, out_shape.H};
|
||||
}
|
||||
|
||||
int ResizeOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLResizeKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel = new (std::nothrow) ResizeOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << " create failed.";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Resize, OpenCLResizeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Resize, OpenCLResizeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Resize, OpenCLKernelCreator<ResizeOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Resize, OpenCLKernelCreator<ResizeOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -31,8 +31,11 @@ class ResizeOpenCLKernel : public OpenCLKernel {
|
|||
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||
~ResizeOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
float getResizeScaleFactor(int input_size, int output_size);
|
||||
|
|
|
@ -42,51 +42,17 @@ std::vector<float> SoftmaxOpenCLKernel::GetMaskForLastChannel(int channels) {
|
|||
return mask;
|
||||
}
|
||||
|
||||
int SoftmaxOpenCLKernel::InitGlobalSize() {
|
||||
size_t global_x, global_y;
|
||||
const size_t global_z = 1;
|
||||
if (axis_ == 1) {
|
||||
global_x = UP_DIV(nhwc_shape_[3], C4NUM);
|
||||
global_y = nhwc_shape_[2];
|
||||
} else if (axis_ == 2) {
|
||||
global_x = UP_DIV(nhwc_shape_[3], C4NUM);
|
||||
global_y = nhwc_shape_[1];
|
||||
} else if (axis_ == 3) {
|
||||
global_x = nhwc_shape_[2];
|
||||
global_y = nhwc_shape_[1];
|
||||
} else {
|
||||
global_x = 1;
|
||||
global_y = 1;
|
||||
}
|
||||
global_size_ = {global_x, global_y, global_z};
|
||||
return lite::RET_OK;
|
||||
}
|
||||
|
||||
int SoftmaxOpenCLKernel::SetWorkGroupSize() {
|
||||
// set work group size
|
||||
InitGlobalSize();
|
||||
int max_work_group_size = ocl_runtime_->GetKernelMaxWorkGroupSize(kernel_(), (*ocl_runtime_->Device())());
|
||||
local_size_ = GetCommonLocalSize(global_size_, max_work_group_size);
|
||||
global_size_ = GetCommonGlobalSize(local_size_, global_size_);
|
||||
return lite::RET_OK;
|
||||
}
|
||||
|
||||
int SoftmaxOpenCLKernel::SetWorkGroupSize1x1() {
|
||||
local_size_ = {32, 1, 1};
|
||||
global_size_ = {32, 1, 1};
|
||||
return lite::RET_OK;
|
||||
}
|
||||
|
||||
int SoftmaxOpenCLKernel::Init() {
|
||||
std::string kernel_name = "SoftMax";
|
||||
std::string program_name = "SoftMax";
|
||||
auto softmax_param = reinterpret_cast<SoftmaxParameter *>(op_parameter_);
|
||||
axis_ = softmax_param->axis_;
|
||||
int SoftmaxOpenCLKernel::CheckSpecs() {
|
||||
axis_ = parameter_->axis_;
|
||||
auto in_shape = in_tensors_[0]->shape();
|
||||
if (in_shape.size() > 4) {
|
||||
MS_LOG(ERROR) << "Init `Softmax` kernel failed: Unsupported shape size: " << in_shape.size();
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (in_shape[0] > 1) {
|
||||
MS_LOG(ERROR) << "Init `Softmax` kernel failed: Unsupported multi-batch.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (axis_ < 0) {
|
||||
axis_ = in_shape.size() + axis_;
|
||||
}
|
||||
|
@ -95,11 +61,15 @@ int SoftmaxOpenCLKernel::Init() {
|
|||
MS_LOG(ERROR) << "Init `Softmax` kernel failed: softmax axis should be H W or C";
|
||||
return RET_ERROR;
|
||||
}
|
||||
nhwc_shape_ = GetNHWCShape(in_shape);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SoftmaxOpenCLKernel::Prepare() {
|
||||
std::string kernel_name = "SoftMax";
|
||||
|
||||
out_shape = Image2DInfo(out_tensors_[0]);
|
||||
std::string source = softmax_source;
|
||||
enable_fp16_ = ocl_runtime_->GetFp16Enable();
|
||||
// framework not set this param yet! just use default.
|
||||
if (nhwc_shape_[1] == 1 && nhwc_shape_[2] == 1 && axis_ == 3) {
|
||||
if (out_shape.H == 1 && out_shape.W == 1 && axis_ == 3) {
|
||||
// support 4d tensor
|
||||
onexone_flag_ = true;
|
||||
kernel_name += "1x1";
|
||||
|
@ -112,62 +82,63 @@ int SoftmaxOpenCLKernel::Init() {
|
|||
kernel_ = ocl_runtime->GetKernelFromBinary(kernel_name);
|
||||
#else
|
||||
std::set<std::string> build_options;
|
||||
std::string program_name = "SoftMax";
|
||||
ocl_runtime_->LoadSource(program_name, source);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
SetConstArgs();
|
||||
SetGlobalLocal();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return lite::RET_OK;
|
||||
}
|
||||
|
||||
int SoftmaxOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
void SoftmaxOpenCLKernel::SetGlobalLocal() {
|
||||
if (onexone_flag_) {
|
||||
local_size_ = {32};
|
||||
global_size_ = {32};
|
||||
} else {
|
||||
size_t global_x, global_y;
|
||||
if (axis_ == 1) {
|
||||
global_x = out_shape.Slice;
|
||||
global_y = out_shape.W;
|
||||
} else if (axis_ == 2) {
|
||||
global_x = out_shape.Slice;
|
||||
global_y = out_shape.H;
|
||||
} else if (axis_ == 3) {
|
||||
global_x = out_shape.W;
|
||||
global_y = out_shape.H;
|
||||
} else {
|
||||
global_x = 1;
|
||||
global_y = 1;
|
||||
}
|
||||
global_size_ = {global_x, global_y};
|
||||
local_size_ = {};
|
||||
}
|
||||
AlignGlobalLocal(global_size_, local_size_);
|
||||
}
|
||||
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
int channel = nhwc_shape_[3];
|
||||
int c4 = UP_DIV(channel, C4NUM);
|
||||
void SoftmaxOpenCLKernel::SetConstArgs() {
|
||||
int arg_idx = 2;
|
||||
int channel = out_shape.C;
|
||||
int c4 = out_shape.Slice;
|
||||
auto mask_ = GetMaskForLastChannel(channel);
|
||||
cl_float4 mask = {mask_[0], mask_[1], mask_[2], mask_[3]};
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, mask);
|
||||
cl_int4 input_shape = {nhwc_shape_[0], nhwc_shape_[1], nhwc_shape_[2], c4};
|
||||
cl_int4 input_shape = {static_cast<int>(out_shape.N), static_cast<int>(out_shape.H), static_cast<int>(out_shape.W),
|
||||
c4};
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx, input_shape);
|
||||
if (onexone_flag_) {
|
||||
SetWorkGroupSize1x1();
|
||||
} else {
|
||||
SetWorkGroupSize();
|
||||
}
|
||||
}
|
||||
|
||||
int SoftmaxOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
// run opengl kernel
|
||||
ocl_runtime_->RunKernel(kernel_, global_size_, local_size_, nullptr);
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return lite::RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLSoftMaxKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel = new (std::nothrow) SoftmaxOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
||||
free(opParameter);
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
if (inputs[0]->shape()[0] > 1) {
|
||||
MS_LOG(ERROR) << "Init `Softmax` kernel failed: Unsupported multi-batch.";
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != mindspore::lite::RET_OK) {
|
||||
MS_LOG(ERROR) << "Init `Softmax` kernel failed!";
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_SoftMax, OpenCLSoftMaxKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_SoftMax, OpenCLSoftMaxKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_SoftMax, OpenCLKernelCreator<SoftmaxOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_SoftMax, OpenCLKernelCreator<SoftmaxOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -33,8 +33,11 @@ class SoftmaxOpenCLKernel : public OpenCLKernel {
|
|||
}
|
||||
|
||||
~SoftmaxOpenCLKernel() override = default;
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
int InitGlobalSize();
|
||||
|
@ -47,9 +50,8 @@ class SoftmaxOpenCLKernel : public OpenCLKernel {
|
|||
bool onexone_flag_{false};
|
||||
std::vector<size_t> local_size_;
|
||||
std::vector<size_t> global_size_;
|
||||
bool enable_fp16_{false};
|
||||
int axis_{0};
|
||||
std::vector<int> nhwc_shape_;
|
||||
Image2DInfo out_shape = Image2DInfo(nullptr);
|
||||
};
|
||||
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -33,9 +33,7 @@ using mindspore::schema::PrimitiveType_Transpose;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int TransposeOpenCLKernel::Init() {
|
||||
std::string kernel_name = "transpose";
|
||||
enable_fp16_ = ocl_runtime_->GetFp16Enable();
|
||||
int TransposeOpenCLKernel::CheckSpecs() {
|
||||
auto param = reinterpret_cast<TransposeParameter *>(op_parameter_);
|
||||
if (in_tensors_[0]->shape().size() != 4 || in_tensors_[0]->shape()[0] > 1) {
|
||||
MS_LOG(ERROR) << "Transpose only support 4d tensor and n = 1 yet.";
|
||||
|
@ -43,16 +41,24 @@ int TransposeOpenCLKernel::Init() {
|
|||
}
|
||||
if (param->num_axes_ == 4 && param->perm_[0] == 0 && param->perm_[1] == 3 && param->perm_[2] == 1 &&
|
||||
param->perm_[3] == 2) {
|
||||
kernel_name += "_0312";
|
||||
type = TransposeType::AXIS0312;
|
||||
} else if (param->num_axes_ == 4 && param->perm_[0] == 0 && param->perm_[1] == 2 && param->perm_[2] == 3 &&
|
||||
param->perm_[3] == 1) {
|
||||
kernel_name += "_0231";
|
||||
type = TransposeType::AXIS0231;
|
||||
} else {
|
||||
MS_LOG(ERROR) << "unsupported transpose axes.";
|
||||
return mindspore::lite::RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int TransposeOpenCLKernel::Prepare() {
|
||||
std::string kernel_name = "transpose";
|
||||
if (type == TransposeType::AXIS0312) {
|
||||
kernel_name += "_0312";
|
||||
} else if (type == TransposeType::AXIS0231) {
|
||||
kernel_name += "_0231";
|
||||
}
|
||||
if (in_tensors_[0]->shape()[2] * UP_DIV(in_tensors_[0]->shape()[3], C4NUM) > MAX_IMAGE2D_SIZE) {
|
||||
// just for input
|
||||
kernel_name += "_oversize";
|
||||
|
@ -68,58 +74,49 @@ int TransposeOpenCLKernel::Init() {
|
|||
ocl_runtime_->LoadSource(program_name, source);
|
||||
ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
|
||||
SetConstArgs();
|
||||
SetGlobalLocal();
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
int TransposeOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
void TransposeOpenCLKernel::SetConstArgs() {
|
||||
std::vector<int> shapex = out_tensors_[0]->shape();
|
||||
size_t n = shapex[0]; // n=1
|
||||
size_t h = shapex[1];
|
||||
size_t w = shapex[2];
|
||||
size_t c = shapex[3];
|
||||
size_t c4 = UP_DIV(c, 4);
|
||||
std::vector<size_t> local = {};
|
||||
std::vector<size_t> global;
|
||||
if (type == TransposeType::AXIS0312) { // NHWC -> NCHW
|
||||
global = {UP_DIV(h, C4NUM), w, c4};
|
||||
} else if (type == TransposeType::AXIS0231) { // NCHW -> NHWC
|
||||
global = {h, UP_DIV(w, C4NUM), c4};
|
||||
}
|
||||
int arg_idx = 2;
|
||||
cl_int4 shape = {static_cast<int>(n), static_cast<int>(h), static_cast<int>(w), static_cast<int>(c)};
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, shape);
|
||||
}
|
||||
|
||||
void TransposeOpenCLKernel::SetGlobalLocal() {
|
||||
std::vector<int> shapex = out_tensors_[0]->shape();
|
||||
size_t h = shapex[1];
|
||||
size_t w = shapex[2];
|
||||
size_t c = shapex[3];
|
||||
size_t c4 = UP_DIV(c, 4);
|
||||
if (type == TransposeType::AXIS0312) { // NHWC -> NCHW
|
||||
global_range_ = {UP_DIV(h, C4NUM), w, c4};
|
||||
} else if (type == TransposeType::AXIS0231) { // NCHW -> NHWC
|
||||
global_range_ = {h, UP_DIV(w, C4NUM), c4};
|
||||
}
|
||||
}
|
||||
|
||||
int TransposeOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->name() << " Running!";
|
||||
int arg_idx = 0;
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->data_c());
|
||||
ocl_runtime_->SetKernelArg(kernel_, arg_idx++, shape);
|
||||
ocl_runtime_->RunKernel(kernel_, global, local, nullptr);
|
||||
ocl_runtime_->RunKernel(kernel_, global_range_, local_range_, nullptr);
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLTransposeKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel =
|
||||
new (std::nothrow) TransposeOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != mindspore::lite::RET_OK) {
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Transpose, OpenCLTransposeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Transpose, OpenCLTransposeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Nhwc2Nchw, OpenCLTransposeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Nhwc2Nchw, OpenCLTransposeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Nchw2Nhwc, OpenCLTransposeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Nchw2Nhwc, OpenCLTransposeKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Transpose, OpenCLKernelCreator<TransposeOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Transpose, OpenCLKernelCreator<TransposeOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Nhwc2Nchw, OpenCLKernelCreator<TransposeOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Nhwc2Nchw, OpenCLKernelCreator<TransposeOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Nchw2Nhwc, OpenCLKernelCreator<TransposeOpenCLKernel>)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Nchw2Nhwc, OpenCLKernelCreator<TransposeOpenCLKernel>)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -34,12 +34,14 @@ class TransposeOpenCLKernel : public OpenCLKernel {
|
|||
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||
~TransposeOpenCLKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int Prepare() override;
|
||||
int CheckSpecs() override;
|
||||
void SetConstArgs() override;
|
||||
void SetGlobalLocal() override;
|
||||
|
||||
private:
|
||||
cl::Kernel kernel_;
|
||||
bool enable_fp16_{false};
|
||||
TransposeType type{TransposeType::AXIS0312};
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -211,15 +211,15 @@ int SubGraphOpenCLKernel::Init() {
|
|||
}
|
||||
nodes_.insert(nodes_.end(), out_convert_ops_.begin(), out_convert_ops_.end());
|
||||
|
||||
UpdateTensorDataType();
|
||||
|
||||
MallocTensorWithReuse();
|
||||
|
||||
ret = SubGraphKernel::Prepare();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "OpenCL prepare fail";
|
||||
return ret;
|
||||
}
|
||||
|
||||
UpdateTensorDataType();
|
||||
|
||||
MallocTensorWithReuse();
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
|
|
@ -14,772 +14,109 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
#include <iostream>
|
||||
|
||||
#include <memory>
|
||||
#include "src/common/log_adapter.h"
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/src/common/file_utils.h"
|
||||
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
|
||||
#include "mindspore/lite/src/runtime/opencl/opencl_allocator.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
|
||||
#include "mindspore/lite/nnacl/fp32/activation.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/activation.h"
|
||||
|
||||
using mindspore::kernel::LiteKernel;
|
||||
using mindspore::kernel::SubGraphOpenCLKernel;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::lite::Tensor;
|
||||
using mindspore::schema::ActivationType_HSWISH;
|
||||
using mindspore::schema::ActivationType_LEAKY_RELU;
|
||||
using mindspore::schema::ActivationType_RELU;
|
||||
using mindspore::schema::ActivationType_RELU6;
|
||||
using mindspore::schema::ActivationType_SIGMOID;
|
||||
using mindspore::schema::ActivationType_SWISH;
|
||||
using mindspore::schema::ActivationType_TANH;
|
||||
using mindspore::schema::PrimitiveType_Activation;
|
||||
#include "mindspore/lite/test/ut/src/runtime/kernel/opencl/utils_tests.h"
|
||||
|
||||
namespace mindspore {
|
||||
class TestActivationOpenCL : public mindspore::CommonTest {};
|
||||
class TestActivationOpenCL : public mindspore::CommonTest {
|
||||
public:
|
||||
TestActivationOpenCL() {}
|
||||
};
|
||||
|
||||
class TestActivationOpenCLTanh : public mindspore::CommonTest {};
|
||||
|
||||
void LoadActivationData(void *dst, size_t dst_size, const std::string &file_path) {
|
||||
if (file_path.empty()) {
|
||||
memset(dst, 0x00, dst_size);
|
||||
} else {
|
||||
auto src_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(file_path.c_str(), &dst_size));
|
||||
memcpy(dst, src_data, dst_size);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CompareRes(lite::Tensor *output_tensor, const std::string &standard_answer_file) {
|
||||
auto *output_data = reinterpret_cast<T *>(output_tensor->data_c());
|
||||
size_t output_size = output_tensor->Size();
|
||||
auto expect_data = reinterpret_cast<T *>(mindspore::lite::ReadFile(standard_answer_file.c_str(), &output_size));
|
||||
constexpr float atol = 0.001;
|
||||
for (int i = 0; i < output_tensor->ElementsNum(); ++i) {
|
||||
if (std::fabs(output_data[i] - expect_data[i]) > atol) {
|
||||
printf("error at idx[%d] expect=%f output=%f\n", i, expect_data[i], output_data[i]);
|
||||
printf("error at idx[%d] expect=%f output=%f\n", i, expect_data[i], output_data[i]);
|
||||
printf("error at idx[%d] expect=%f output=%f\n\n\n", i, expect_data[i], output_data[i]);
|
||||
return;
|
||||
}
|
||||
}
|
||||
printf("compare success!\n");
|
||||
printf("compare success!\n");
|
||||
printf("compare success!\n\n\n");
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void printf_tensor(const std::string &str, mindspore::lite::Tensor *in_data) {
|
||||
MS_LOG(INFO) << str;
|
||||
auto input_data = reinterpret_cast<T *>(in_data->data_c());
|
||||
for (int i = 0; i < in_data->ElementsNum(); ++i) {
|
||||
printf("%f ", input_data[i]);
|
||||
}
|
||||
printf("\n");
|
||||
MS_LOG(INFO) << "Print tensor done";
|
||||
}
|
||||
|
||||
TEST_F(TestActivationOpenCL, ReluFp_dim4) {
|
||||
std::string in_file = "/data/local/tmp/in_data.bin";
|
||||
std::string out_file = "/data/local/tmp/relu.bin";
|
||||
MS_LOG(INFO) << "Relu Begin test!";
|
||||
void RunTestCaseActivation(void *input_data0, const std::vector<int> &input_shape, void *output_data,
|
||||
const std::vector<int> &out_shape, bool enable_fp16, int act_type) {
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper().GetInstance();
|
||||
ocl_runtime->Init();
|
||||
size_t dtype_size = enable_fp16 ? sizeof(float16_t) : sizeof(float);
|
||||
ocl_runtime->SetFp16Enable(enable_fp16);
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
auto data_type = kNumberTypeFloat16;
|
||||
ocl_runtime->SetFp16Enable(data_type == kNumberTypeFloat16);
|
||||
bool enable_fp16 = ocl_runtime->GetFp16Enable();
|
||||
MS_LOG(INFO) << "Init tensors.";
|
||||
std::vector<int> input_shape = {1, 9};
|
||||
schema::Format format = schema::Format_NC;
|
||||
auto tensor_type = lite::Tensor::CONST_TENSOR;
|
||||
auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (input_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new input tensor error!";
|
||||
return;
|
||||
}
|
||||
auto *output_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (output_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new output tensor error!";
|
||||
delete input_tensor;
|
||||
return;
|
||||
}
|
||||
std::vector<lite::Tensor *> inputs{input_tensor};
|
||||
std::vector<lite::Tensor *> outputs{output_tensor};
|
||||
inputs[0]->MallocData(allocator);
|
||||
LoadActivationData(inputs[0]->data_c(), inputs[0]->Size(), in_file);
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("ReluFp16:--input data---", inputs[0]);
|
||||
} else {
|
||||
printf_tensor<float>("ReluFp32:--input data---", inputs[0]);
|
||||
}
|
||||
|
||||
auto *param = new (std::nothrow) ActivationParameter();
|
||||
auto param = static_cast<ActivationParameter *>(malloc(sizeof(ActivationParameter)));
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "New ActivationParameter fail.";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "param_ptr create error.";
|
||||
return;
|
||||
}
|
||||
param->type_ = ActivationType_RELU;
|
||||
auto *kernel =
|
||||
new (std::nothrow) kernel::ActivationOpenClKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Kernel:Relu create fail.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
param->op_parameter_.type_ = schema::PrimitiveType_Activation;
|
||||
param->type_ = act_type;
|
||||
auto tensor_x_ptr =
|
||||
std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32), input_shape);
|
||||
auto tensor_x = tensor_x_ptr.get();
|
||||
if (tensor_x == nullptr) {
|
||||
MS_LOG(ERROR) << "tensor_x create error.";
|
||||
return;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete kernel;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Init relu fail.";
|
||||
auto tensor_out_ptr =
|
||||
std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32), out_shape);
|
||||
auto tensor_out = tensor_out_ptr.get();
|
||||
if (tensor_out == nullptr) {
|
||||
MS_LOG(ERROR) << "tensor_out create error.";
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Create kernel SubGraphOpenCLKernel.";
|
||||
std::vector<kernel::LiteKernel *> kernels{kernel};
|
||||
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
if (sub_graph == nullptr) {
|
||||
delete kernel;
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Kernel SubGraphOpenCLKernel create fail.";
|
||||
std::vector<lite::Tensor *> inputs{tensor_x};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto op_kernel = kernel::OpenCLKernelCreator<kernel::ActivationOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(param), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (op_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "op_kernel create error.";
|
||||
return;
|
||||
}
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
std::vector<kernel::LiteKernel *> kernels{op_kernel};
|
||||
|
||||
std::vector<lite::Tensor *> inputs_g{tensor_x};
|
||||
auto pGraph_ptr = std::make_unique<kernel::SubGraphOpenCLKernel>(inputs_g, outputs, kernels, kernels, kernels);
|
||||
auto pGraph = pGraph_ptr.get();
|
||||
if (pGraph == nullptr) {
|
||||
MS_LOG(ERROR) << "pGraph create error.";
|
||||
return;
|
||||
}
|
||||
pGraph->Init();
|
||||
memcpy(inputs[0]->MutableData(), input_data0, tensor_x->ElementsNum() * dtype_size);
|
||||
pGraph->Run();
|
||||
if (enable_fp16) {
|
||||
CompareOutput(outputs[0]->MutableData(), output_data, tensor_out->ElementsNum(), static_cast<float16_t>(1e-3),
|
||||
2e-2);
|
||||
} else {
|
||||
CompareOutput(outputs[0]->MutableData(), output_data, tensor_out->ElementsNum(), static_cast<float>(1e-5));
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Initialize sub_graph.";
|
||||
ret = sub_graph->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init sub_graph error.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
return;
|
||||
for (auto t : inputs) {
|
||||
t->set_data(nullptr);
|
||||
}
|
||||
MS_LOG(INFO) << "Run SubGraphOpenCLKernel.";
|
||||
ret = sub_graph->Run();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
MS_LOG(ERROR) << "Run SubGraphOpenCLKernel error.";
|
||||
return;
|
||||
for (auto t : outputs) {
|
||||
t->set_data(nullptr);
|
||||
}
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("ReluFp16--output data---", outputs[0]);
|
||||
CompareRes<float16_t>(output_tensor, out_file);
|
||||
} else {
|
||||
printf_tensor<float>("ReluFp32--output data--", outputs[0]);
|
||||
CompareRes<float>(output_tensor, out_file);
|
||||
}
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
MS_LOG(INFO) << "TestActivation passed";
|
||||
}
|
||||
|
||||
TEST_F(TestActivationOpenCL, Relu6Fp_dim4) {
|
||||
std::string in_file = "/data/local/tmp/in_data.bin";
|
||||
std::string out_file = "/data/local/tmp/relu6.bin";
|
||||
MS_LOG(INFO) << "Relu6 Begin test!";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper().GetInstance();
|
||||
auto data_type = kNumberTypeFloat16;
|
||||
ocl_runtime->SetFp16Enable(data_type == kNumberTypeFloat16);
|
||||
bool enable_fp16 = ocl_runtime->GetFp16Enable();
|
||||
ocl_runtime->Init();
|
||||
|
||||
MS_LOG(INFO) << "Init tensors.";
|
||||
std::vector<int> input_shape = {1, 9};
|
||||
schema::Format format = schema::Format_NC;
|
||||
auto tensor_type = lite::Tensor::CONST_TENSOR;
|
||||
auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (input_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new input tensor error!";
|
||||
return;
|
||||
}
|
||||
auto *output_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (output_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new output tensor error!";
|
||||
delete input_tensor;
|
||||
return;
|
||||
}
|
||||
std::vector<lite::Tensor *> inputs{input_tensor};
|
||||
std::vector<lite::Tensor *> outputs{output_tensor};
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
inputs[0]->MallocData(allocator);
|
||||
MS_LOG(INFO) << "Initialize input data";
|
||||
LoadActivationData(inputs[0]->data_c(), inputs[0]->Size(), in_file);
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Relu6:FP16--input data--", inputs[0]);
|
||||
} else {
|
||||
printf_tensor<float>("Relu6:FP32--input data--", inputs[0]);
|
||||
}
|
||||
|
||||
auto *param = new (std::nothrow) ActivationParameter();
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "New ActivationParameter fail.";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
param->type_ = ActivationType_RELU6;
|
||||
auto *kernel =
|
||||
new (std::nothrow) kernel::ActivationOpenClKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Kernel:Relu6 create fail.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete kernel;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Init relu6 fail.";
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Create kernel SubGraphOpenCLKernel.";
|
||||
std::vector<kernel::LiteKernel *> kernels{kernel};
|
||||
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
if (sub_graph == nullptr) {
|
||||
delete kernel;
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Kernel SubGraphOpenCLKernel create fail.";
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Initialize sub_graph.";
|
||||
ret = sub_graph->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init sub_graph error.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Run SubGraphOpenCLKernel.";
|
||||
ret = sub_graph->Run();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
MS_LOG(ERROR) << "Run SubGraphOpenCLKernel error.";
|
||||
return;
|
||||
}
|
||||
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Relu6:FP16--output data---", outputs[0]);
|
||||
CompareRes<float16_t>(output_tensor, out_file);
|
||||
} else {
|
||||
printf_tensor<float>("Relu6:FP32--output data---", outputs[0]);
|
||||
CompareRes<float>(output_tensor, out_file);
|
||||
}
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
TEST_F(TestActivationOpenCL, ActivationReLUFp32) {
|
||||
int n = 1;
|
||||
int h = 2;
|
||||
int w = 2;
|
||||
int c = 3;
|
||||
std::vector<int> in_shape0 = {n, h, w, c};
|
||||
std::vector<int> out_shape = {n, h, w, c};
|
||||
std::vector<float> input_data = {-1.0f, 1.0f, 2.0f, 3.0f, -1.0f, -2.0f, 3.0f, -4.0f, 5.0f, -6.0f, 7.0f, 9.0f};
|
||||
std::vector<float> output_data = {0.0f, 1.0f, 2.0f, 3.0f, 0.0f, 0.0f, 3.0f, 0.0f, 5.0f, 0.0f, 7.0f, 9.0f};
|
||||
RunTestCaseActivation(input_data.data(), in_shape0, output_data.data(), out_shape, false,
|
||||
schema::ActivationType_RELU);
|
||||
}
|
||||
|
||||
TEST_F(TestActivationOpenCL, SigmoidFp_dim4) {
|
||||
std::string in_file = "/data/local/tmp/in_data.bin";
|
||||
std::string out_file = "/data/local/tmp/sigmoid.bin";
|
||||
MS_LOG(INFO) << "Sigmoid Begin test!";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper().GetInstance();
|
||||
ocl_runtime->Init();
|
||||
auto data_type = kNumberTypeFloat32;
|
||||
ocl_runtime->SetFp16Enable(data_type == kNumberTypeFloat16);
|
||||
bool enable_fp16 = ocl_runtime->GetFp16Enable();
|
||||
|
||||
MS_LOG(INFO) << "Init tensors.";
|
||||
std::vector<int> input_shape = {1, 9};
|
||||
schema::Format format = schema::Format_NC;
|
||||
auto tensor_type = lite::Tensor::CONST_TENSOR;
|
||||
auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (input_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new input tensor error!";
|
||||
return;
|
||||
}
|
||||
auto *output_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (output_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new output tensor error!";
|
||||
delete input_tensor;
|
||||
return;
|
||||
}
|
||||
std::vector<lite::Tensor *> inputs{input_tensor};
|
||||
std::vector<lite::Tensor *> outputs{output_tensor};
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
inputs[0]->MallocData(allocator);
|
||||
MS_LOG(INFO) << "Initialize input data";
|
||||
LoadActivationData(inputs[0]->data_c(), inputs[0]->Size(), in_file);
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Sigmoid:FP16--input data--", inputs[0]);
|
||||
} else {
|
||||
printf_tensor<float>("Sigmoid:FP32--input data--", inputs[0]);
|
||||
}
|
||||
|
||||
auto *param = new (std::nothrow) ActivationParameter();
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "New ActivationParameter fail.";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
param->type_ = ActivationType_SIGMOID;
|
||||
auto *kernel =
|
||||
new (std::nothrow) kernel::ActivationOpenClKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Kernel:Sigmoid create fail.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete kernel;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Init sigmoid fail.";
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Create kernel SubGraphOpenCLKernel.";
|
||||
std::vector<kernel::LiteKernel *> kernels{kernel};
|
||||
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
if (sub_graph == nullptr) {
|
||||
delete kernel;
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Kernel SubGraphOpenCLKernel create fail.";
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Initialize sub_graph.";
|
||||
ret = sub_graph->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init sub_graph error.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Run SubGraphOpenCLKernel.";
|
||||
ret = sub_graph->Run();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
MS_LOG(ERROR) << "Run SubGraphOpenCLKernel error.";
|
||||
return;
|
||||
}
|
||||
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Sigmoid:FP16--output data---", outputs[0]);
|
||||
CompareRes<float16_t>(output_tensor, out_file);
|
||||
} else {
|
||||
printf_tensor<float>("Sigmoid:FP32--output data---", outputs[0]);
|
||||
CompareRes<float>(output_tensor, out_file);
|
||||
}
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
}
|
||||
|
||||
TEST_F(TestActivationOpenCL, LeakyReluFp_dim4) {
|
||||
std::string in_file = "/data/local/tmp/in_data.bin";
|
||||
std::string out_file = "/data/local/tmp/leaky_relu.bin";
|
||||
MS_LOG(INFO) << "Leaky relu Begin test!";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper().GetInstance();
|
||||
ocl_runtime->Init();
|
||||
auto data_type = kNumberTypeFloat16;
|
||||
ocl_runtime->SetFp16Enable(data_type == kNumberTypeFloat16);
|
||||
bool enable_fp16 = ocl_runtime->GetFp16Enable();
|
||||
|
||||
MS_LOG(INFO) << "Init tensors.";
|
||||
std::vector<int> input_shape = {1, 9};
|
||||
auto tensor_type = lite::Tensor::CONST_TENSOR;
|
||||
schema::Format format = schema::Format_NC;
|
||||
auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (input_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new input tensor error!";
|
||||
return;
|
||||
}
|
||||
auto *output_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (output_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new output tensor error!";
|
||||
delete input_tensor;
|
||||
return;
|
||||
}
|
||||
std::vector<lite::Tensor *> inputs{input_tensor};
|
||||
std::vector<lite::Tensor *> outputs{output_tensor};
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
inputs[0]->MallocData(allocator);
|
||||
MS_LOG(INFO) << "Initialize input data";
|
||||
LoadActivationData(inputs[0]->data_c(), inputs[0]->Size(), in_file);
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Leaky Relu:FP16--input data--", inputs[0]);
|
||||
} else {
|
||||
printf_tensor<float>("Leaky Relu:FP32--input data--", inputs[0]);
|
||||
}
|
||||
|
||||
auto *param = new (std::nothrow) ActivationParameter();
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "New ActivationParameter fail.";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
param->alpha_ = 0.3f;
|
||||
param->type_ = ActivationType_LEAKY_RELU;
|
||||
auto *kernel =
|
||||
new (std::nothrow) kernel::ActivationOpenClKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Kernel:leaky relu create fail.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete kernel;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Init leaky relu fail.";
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Create kernel SubGraphOpenCLKernel.";
|
||||
std::vector<kernel::LiteKernel *> kernels{kernel};
|
||||
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
if (sub_graph == nullptr) {
|
||||
delete kernel;
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Kernel SubGraphOpenCLKernel create fail.";
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Initialize sub_graph.";
|
||||
ret = sub_graph->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init sub_graph error.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Run SubGraphOpenCLKernel.";
|
||||
ret = sub_graph->Run();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
MS_LOG(ERROR) << "Run SubGraphOpenCLKernel error.";
|
||||
return;
|
||||
}
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Leaky Relu:FP16--output data---", outputs[0]);
|
||||
CompareRes<float16_t>(output_tensor, out_file);
|
||||
} else {
|
||||
printf_tensor<float>("Leaky Relu:FP32--output data---", outputs[0]);
|
||||
CompareRes<float>(output_tensor, out_file);
|
||||
}
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
}
|
||||
|
||||
TEST_F(TestActivationOpenCLTanh, TanhFp_dim4) {
|
||||
std::string in_file = "/data/local/tmp/test_data/in_tanhfp16.bin";
|
||||
std::string out_file = "/data/local/tmp/test_data/out_tanhfp16.bin";
|
||||
MS_LOG(INFO) << "Tanh Begin test!";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper().GetInstance();
|
||||
ocl_runtime->Init();
|
||||
auto data_type = kNumberTypeFloat16;
|
||||
ocl_runtime->SetFp16Enable(data_type == kNumberTypeFloat16);
|
||||
bool enable_fp16 = ocl_runtime->GetFp16Enable();
|
||||
|
||||
MS_LOG(INFO) << "Init tensors.";
|
||||
std::vector<int> input_shape = {1, 2, 3, 9};
|
||||
schema::Format format = schema::Format_NHWC;
|
||||
auto tensor_type = lite::Tensor::CONST_TENSOR;
|
||||
auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (input_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new input tensor error!";
|
||||
return;
|
||||
}
|
||||
auto *output_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type);
|
||||
if (output_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new output tensor error!";
|
||||
delete input_tensor;
|
||||
return;
|
||||
}
|
||||
std::vector<lite::Tensor *> inputs{input_tensor};
|
||||
std::vector<lite::Tensor *> outputs{output_tensor};
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
inputs[0]->MallocData(allocator);
|
||||
MS_LOG(INFO) << "Initialize input data";
|
||||
LoadActivationData(inputs[0]->data_c(), inputs[0]->Size(), in_file);
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Tanh:FP16--input data--", inputs[0]);
|
||||
} else {
|
||||
printf_tensor<float>("Tanh:FP32--input data--", inputs[0]);
|
||||
}
|
||||
|
||||
auto param = reinterpret_cast<ActivationParameter *>(malloc(sizeof(ActivationParameter)));
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "New ActivationParameter fail.";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
param->type_ = ActivationType_TANH;
|
||||
auto *kernel =
|
||||
new (std::nothrow) kernel::ActivationOpenClKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Kernel:Tanh create fail.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete kernel;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Init tanh fail.";
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Create kernel SubGraphOpenCLKernel.";
|
||||
std::vector<kernel::LiteKernel *> kernels{kernel};
|
||||
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
if (sub_graph == nullptr) {
|
||||
delete kernel;
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
MS_LOG(ERROR) << "Kernel SubGraphOpenCLKernel create fail.";
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Initialize sub_graph.";
|
||||
ret = sub_graph->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init sub_graph error.";
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Run SubGraphOpenCLKernel.";
|
||||
ret = sub_graph->Run();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
MS_LOG(ERROR) << "Run SubGraphOpenCLKernel error.";
|
||||
return;
|
||||
}
|
||||
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Tanh:FP16--output data---", outputs[0]);
|
||||
CompareRes<float16_t>(output_tensor, out_file);
|
||||
} else {
|
||||
printf_tensor<float>("Tanh:FP32--output data---", outputs[0]);
|
||||
CompareRes<float>(output_tensor, out_file);
|
||||
}
|
||||
input_tensor->set_data(nullptr);
|
||||
delete input_tensor;
|
||||
output_tensor->set_data(nullptr);
|
||||
delete output_tensor;
|
||||
delete sub_graph;
|
||||
}
|
||||
|
||||
TEST_F(TestActivationOpenCL, SwishFp16_dim4) {
|
||||
size_t input_size;
|
||||
std::string in_file = "/data/local/tmp/test_data/in_swishfp16.bin";
|
||||
std::string out_file = "/data/local/tmp/test_data/out_swishfp16.bin";
|
||||
auto input_data = reinterpret_cast<float16_t *>(mindspore::lite::ReadFile(in_file.c_str(), &input_size));
|
||||
MS_LOG(INFO) << "Swish Begin test!";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper();
|
||||
auto runtime = ocl_runtime.GetInstance();
|
||||
runtime->Init();
|
||||
auto data_type = kNumberTypeFloat16;
|
||||
runtime->SetFp16Enable(data_type == kNumberTypeFloat16);
|
||||
bool enable_fp16 = runtime->GetFp16Enable();
|
||||
|
||||
MS_LOG(INFO) << "Init tensors.";
|
||||
std::vector<int> input_shape = {1, 2, 3, 9};
|
||||
schema::Format format = schema::Format_NHWC;
|
||||
auto tensor_type = lite::Tensor::CONST_TENSOR;
|
||||
auto input_tensor = Tensor(data_type, input_shape, format, tensor_type);
|
||||
auto output_tensor = Tensor(data_type, input_shape, format, tensor_type);
|
||||
|
||||
std::vector<lite::Tensor *> inputs{&input_tensor};
|
||||
std::vector<lite::Tensor *> outputs{&output_tensor};
|
||||
auto allocator = runtime->GetAllocator();
|
||||
inputs[0]->MallocData(allocator);
|
||||
MS_LOG(INFO) << "Initialize input data";
|
||||
memcpy(inputs[0]->data_c(), input_data, input_size);
|
||||
if (enable_fp16) {
|
||||
printf_tensor<float16_t>("Swish:FP16--input data--", inputs[0]);
|
||||
} else {
|
||||
printf_tensor<float>("Swish:FP32--input data--", inputs[0]);
|
||||
}
|
||||
|
||||
auto param = reinterpret_cast<ActivationParameter *>(malloc(sizeof(ActivationParameter)));
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "New ActivationParameter fail.";
|
||||
return;
|
||||
}
|
||||
param->type_ = ActivationType_SWISH;
|
||||
auto *kernel =
|
||||
new (std::nothrow) kernel::ActivationOpenClKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Kernel:Swish create fail.";
|
||||
delete param;
|
||||
return;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init Swish fail.";
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "Create kernel SubGraphOpenCLKernel.";
|
||||
std::vector<kernel::LiteKernel *> kernels{kernel};
|
||||
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
if (sub_graph == nullptr) {
|
||||
delete kernel;
|
||||
delete param;
|
||||
MS_LOG(ERROR) << "Kernel SubGraphOpenCLKernel create fail.";
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Initialize sub_graph.";
|
||||
ret = sub_graph->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init sub_graph error.";
|
||||
delete sub_graph;
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Run SubGraphOpenCLKernel.";
|
||||
ret = sub_graph->Run();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete sub_graph;
|
||||
MS_LOG(ERROR) << "Run SubGraphOpenCLKernel error.";
|
||||
return;
|
||||
}
|
||||
CompareRes<float16_t>(&output_tensor, out_file);
|
||||
delete sub_graph;
|
||||
}
|
||||
|
||||
TEST_F(TestActivationOpenCL, HSwishFp16_dim4) {
|
||||
MS_LOG(INFO) << " begin test ";
|
||||
auto runtime_wrapper = lite::opencl::OpenCLRuntimeWrapper();
|
||||
auto runtime = runtime_wrapper.GetInstance();
|
||||
runtime->Init();
|
||||
auto allocator = runtime->GetAllocator();
|
||||
|
||||
std::vector<int> input_shape = {1, 1, 2, 4};
|
||||
std::vector<int> output_shape = {1, 1, 2, 4};
|
||||
auto data_type = kNumberTypeFloat32;
|
||||
|
||||
auto tensor_type = lite::Tensor::CONST_TENSOR;
|
||||
schema::Format format = schema::Format_NHWC;
|
||||
float input_data[] = {-3.0, -2.0, -1.0, 0.0, 1.0, 5.0, 6.0, 7.0};
|
||||
float correctOutput[] = {-0, -0.33333334, -0.33333334, 0, 0.6666667, 5, 6, 7};
|
||||
|
||||
MS_LOG(INFO) << "Init tensors.";
|
||||
auto output_tensor = Tensor(data_type, input_shape, format, tensor_type);
|
||||
auto in_tensor = Tensor(data_type, output_shape, format, tensor_type);
|
||||
std::vector<lite::Tensor *> inputs{&in_tensor};
|
||||
std::vector<lite::Tensor *> outputs{&output_tensor};
|
||||
runtime->SetFp16Enable(data_type == kNumberTypeFloat16);
|
||||
|
||||
MS_LOG(INFO) << "Initialize input data";
|
||||
auto param = reinterpret_cast<ActivationParameter *>(malloc(sizeof(ActivationParameter)));
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "New ActivationParameter fail.";
|
||||
return;
|
||||
}
|
||||
param->type_ = ActivationType_HSWISH;
|
||||
auto *kernel =
|
||||
new (std::nothrow) kernel::ActivationOpenClKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Kernel:HSwish create fail.";
|
||||
delete param;
|
||||
return;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init HSwish fail.";
|
||||
return;
|
||||
}
|
||||
inputs[0]->MallocData(allocator);
|
||||
memcpy(inputs[0]->data_c(), input_data, sizeof(input_data));
|
||||
MS_LOG(INFO) << "Create kernel SubGraphOpenCLKernel.";
|
||||
std::vector<kernel::LiteKernel *> kernels{kernel};
|
||||
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
if (sub_graph == nullptr) {
|
||||
delete kernel;
|
||||
delete param;
|
||||
MS_LOG(ERROR) << "Kernel SubGraphOpenCLKernel create fail.";
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Initialize sub_graph.";
|
||||
ret = sub_graph->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init sub_graph error.";
|
||||
delete sub_graph;
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Run SubGraphOpenCLKernel.";
|
||||
ret = sub_graph->Run();
|
||||
if (ret != RET_OK) {
|
||||
delete param;
|
||||
delete sub_graph;
|
||||
MS_LOG(ERROR) << "Run SubGraphOpenCLKernel error.";
|
||||
return;
|
||||
}
|
||||
auto *output_data_gpu = reinterpret_cast<float *>(output_tensor.data_c());
|
||||
CompareOutputData(output_data_gpu, correctOutput, output_tensor.ElementsNum(), 0.0001);
|
||||
delete sub_graph;
|
||||
TEST_F(TestActivationOpenCL, ActivationReLUFp16) {
|
||||
int n = 1;
|
||||
int h = 2;
|
||||
int w = 2;
|
||||
int c = 3;
|
||||
std::vector<int> in_shape0 = {n, h, w, c};
|
||||
std::vector<int> out_shape = {n, h, w, c};
|
||||
std::vector<float16_t> input_data = {-1.0f, 1.0f, 2.0f, 3.0f, -1.0f, -2.0f, 3.0f, -4.0f, 5.0f, -6.0f, 7.0f, 9.0f};
|
||||
std::vector<float16_t> output_data = {0.0f, 1.0f, 2.0f, 3.0f, 0.0f, 0.0f, 3.0f, 0.0f, 5.0f, 0.0f, 7.0f, 9.0f};
|
||||
RunTestCaseActivation(input_data.data(), in_shape0, output_data.data(), out_shape, true, schema::ActivationType_RELU);
|
||||
}
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -75,14 +75,12 @@ void RunTestCaseArithmetic(void *input_data0, const std::vector<int> &input_shap
|
|||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x, tensor_w};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto op_kernel_ptr =
|
||||
std::make_unique<kernel::ArithmeticOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
auto op_kernel = op_kernel_ptr.release();
|
||||
auto op_kernel = kernel::OpenCLKernelCreator<kernel::ArithmeticOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(param), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (op_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "op_kernel create error.";
|
||||
return;
|
||||
}
|
||||
op_kernel->Init();
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
std::vector<kernel::LiteKernel *> kernels{op_kernel};
|
||||
|
|
|
@ -99,15 +99,13 @@ void RunTestCaseConv2dTranspose(const std::vector<int> &shape, void *input_data,
|
|||
opParameter->pad_l_ = pad;
|
||||
opParameter->input_channel_ = ci;
|
||||
opParameter->output_channel_ = co;
|
||||
auto op_kernel_ptr = std::make_unique<kernel::Conv2dTransposeOpenCLKernel>(
|
||||
reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
auto op_kernel = op_kernel_ptr.release();
|
||||
auto op_kernel = kernel::OpenCLKernelCreator<kernel::Conv2dTransposeOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(opParameter), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (op_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "op_kernel create error.";
|
||||
return;
|
||||
}
|
||||
op_kernel->set_name("DeConv");
|
||||
op_kernel->Init();
|
||||
|
||||
inputs[0]->MallocData(allocator);
|
||||
std::vector<kernel::LiteKernel *> kernels{op_kernel};
|
||||
|
|
|
@ -63,6 +63,7 @@ void RunTestCaseFullConnection(const std::vector<int> &shape, void *input_data,
|
|||
param->a_transpose_ = false;
|
||||
param->b_transpose_ = true;
|
||||
param->has_bias_ = true;
|
||||
param->act_type_ = ActType_No;
|
||||
auto tensor_x_ptr = std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||
input_shape, dims == 2 ? schema::Format_NC : schema::Format_NHWC);
|
||||
auto tensor_x = tensor_x_ptr.get();
|
||||
|
@ -98,14 +99,12 @@ void RunTestCaseFullConnection(const std::vector<int> &shape, void *input_data,
|
|||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x, tensor_w, tensor_bias};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto op_kernel_ptr =
|
||||
std::make_unique<kernel::FullConnectionOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
auto op_kernel = op_kernel_ptr.release();
|
||||
auto op_kernel = kernel::OpenCLKernelCreator<kernel::FullConnectionOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(param), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (op_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "op_kernel create error.";
|
||||
return;
|
||||
}
|
||||
op_kernel->Init();
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
std::vector<kernel::LiteKernel *> kernels{op_kernel};
|
||||
|
|
|
@ -87,14 +87,12 @@ void RunTestCaseMatMul(const std::vector<int> &shape, void *input_data, void *we
|
|||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x, tensor_w};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto op_kernel_ptr =
|
||||
std::make_unique<kernel::MatMulOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
auto op_kernel = op_kernel_ptr.release();
|
||||
auto op_kernel = kernel::OpenCLKernelCreator<kernel::MatMulOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(param), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (op_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "op_kernel create error.";
|
||||
return;
|
||||
}
|
||||
op_kernel->Init();
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
std::vector<kernel::LiteKernel *> kernels{op_kernel};
|
||||
|
|
|
@ -1,158 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include "src/common/log_adapter.h"
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/src/common/file_utils.h"
|
||||
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/pooling2d.h"
|
||||
#include "mindspore/lite/test/ut/src/runtime/kernel/opencl/utils_tests.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
class TestMaxPoolingOpenCL : public mindspore::CommonTest {};
|
||||
|
||||
void InitMaxPoolingParam(PoolingParameter *param) {
|
||||
param->input_batch_ = 1;
|
||||
param->input_h_ = 2;
|
||||
param->input_w_ = 2;
|
||||
param->input_channel_ = 4;
|
||||
|
||||
param->output_batch_ = 1;
|
||||
param->output_h_ = 1;
|
||||
param->output_w_ = 1;
|
||||
param->output_channel_ = 4;
|
||||
|
||||
param->window_h_ = 2;
|
||||
param->window_w_ = 2;
|
||||
|
||||
param->stride_h_ = 2;
|
||||
param->stride_w_ = 2;
|
||||
|
||||
param->pad_u_ = 0;
|
||||
param->pad_d_ = 0;
|
||||
param->pad_l_ = 0;
|
||||
param->pad_r_ = 0;
|
||||
|
||||
param->pool_mode_ = PoolMode_MaxPool;
|
||||
}
|
||||
|
||||
void RunTestCaseMaxPooling(const std::vector<int> &shape, void *input_data, void *output_data, bool enable_fp16) {
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper().GetInstance();
|
||||
ocl_runtime->Init();
|
||||
size_t dtype_size = enable_fp16 ? sizeof(float16_t) : sizeof(float);
|
||||
ocl_runtime->SetFp16Enable(enable_fp16);
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
int n = shape[0];
|
||||
int h = shape[1];
|
||||
int w = shape[2];
|
||||
int c = shape[3];
|
||||
int oh = shape[4];
|
||||
int ow = shape[5];
|
||||
auto param = static_cast<PoolingParameter *>(malloc(sizeof(PoolingParameter)));
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "param create error.";
|
||||
return;
|
||||
}
|
||||
InitMaxPoolingParam(param);
|
||||
std::vector<int> input_shape = {n, h, w, c};
|
||||
auto tensor_x_ptr = std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||
input_shape, schema::Format_NHWC);
|
||||
auto tensor_x = tensor_x_ptr.get();
|
||||
if (tensor_x == nullptr) {
|
||||
MS_LOG(ERROR) << "tensor_x create error.";
|
||||
return;
|
||||
}
|
||||
std::vector<int> out_shape = {n, oh, ow, c};
|
||||
auto tensor_out_ptr = std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||
out_shape, schema::Format_NHWC);
|
||||
auto tensor_out = tensor_out_ptr.get();
|
||||
if (tensor_out == nullptr) {
|
||||
MS_LOG(ERROR) << "tensor_out create error.";
|
||||
return;
|
||||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto arith_kernel_ptr =
|
||||
std::make_unique<kernel::PoolingOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
auto arith_kernel = arith_kernel_ptr.release();
|
||||
if (arith_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "arith_kernel create error.";
|
||||
return;
|
||||
}
|
||||
arith_kernel->Init();
|
||||
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
std::vector<kernel::LiteKernel *> kernels{arith_kernel};
|
||||
auto pGraph_ptr = std::make_unique<kernel::SubGraphOpenCLKernel>(inputs, outputs, kernels, kernels, kernels);
|
||||
auto pGraph = pGraph_ptr.get();
|
||||
if (pGraph == nullptr) {
|
||||
MS_LOG(ERROR) << "pGraph create error.";
|
||||
return;
|
||||
}
|
||||
pGraph->Init();
|
||||
memcpy(inputs[0]->MutableData(), input_data, inputs[0]->ElementsNum() * dtype_size);
|
||||
pGraph->Run();
|
||||
|
||||
if (enable_fp16) {
|
||||
CompareOutput(outputs[0]->MutableData(), output_data, outputs[0]->ElementsNum(), static_cast<float16_t>(1e-3),
|
||||
2e-2);
|
||||
} else {
|
||||
CompareOutput(outputs[0]->MutableData(), output_data, outputs[0]->ElementsNum(), static_cast<float>(1e-5));
|
||||
}
|
||||
for (auto t : inputs) {
|
||||
t->set_data(nullptr);
|
||||
}
|
||||
for (auto t : outputs) {
|
||||
t->set_data(nullptr);
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Test MaxPool2d passed";
|
||||
}
|
||||
|
||||
TEST_F(TestMaxPoolingOpenCL, MaxPoolingFp32) {
|
||||
int n = 1;
|
||||
int h = 2;
|
||||
int w = 2;
|
||||
int c = 4;
|
||||
int oh = 1;
|
||||
int ow = 1;
|
||||
std::vector<int> shape = {n, h, w, c, oh, ow};
|
||||
std::vector<float> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f,
|
||||
8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f};
|
||||
std::vector<float> output_data = {12.0f, 13.0f, 14.0f, 15.0f};
|
||||
|
||||
RunTestCaseMaxPooling(shape, input_data.data(), output_data.data(), false);
|
||||
}
|
||||
|
||||
TEST_F(TestMaxPoolingOpenCL, MaxPoolingFp16) {
|
||||
int n = 1;
|
||||
int h = 2;
|
||||
int w = 2;
|
||||
int c = 4;
|
||||
int oh = 1;
|
||||
int ow = 1;
|
||||
std::vector<int> shape = {n, h, w, c, oh, ow};
|
||||
std::vector<float16_t> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f,
|
||||
8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f};
|
||||
std::vector<float16_t> output_data = {12.0f, 13.0f, 14.0f, 15.0f};
|
||||
|
||||
RunTestCaseMaxPooling(shape, input_data.data(), output_data.data(), true);
|
||||
}
|
||||
} // namespace mindspore
|
|
@ -25,9 +25,9 @@
|
|||
|
||||
namespace mindspore {
|
||||
|
||||
class TestAvgPoolingOpenCL : public mindspore::CommonTest {};
|
||||
class TestPoolingOpenCL : public mindspore::CommonTest {};
|
||||
|
||||
void InitAvgPoolingParam(PoolingParameter *param) {
|
||||
void InitPoolingParam(PoolingParameter *param) {
|
||||
param->input_batch_ = 1;
|
||||
param->input_h_ = 2;
|
||||
param->input_w_ = 2;
|
||||
|
@ -48,11 +48,10 @@ void InitAvgPoolingParam(PoolingParameter *param) {
|
|||
param->pad_d_ = 0;
|
||||
param->pad_l_ = 0;
|
||||
param->pad_r_ = 0;
|
||||
|
||||
param->pool_mode_ = PoolMode_AvgPool;
|
||||
}
|
||||
|
||||
void RunTestCaseAvgPooling(const std::vector<int> &shape, void *input_data, void *output_data, bool enable_fp16) {
|
||||
void RunTestCasePooling(const std::vector<int> &shape, void *input_data, void *output_data, bool enable_fp16,
|
||||
PoolMode pool_mode) {
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntimeWrapper().GetInstance();
|
||||
ocl_runtime->Init();
|
||||
size_t dtype_size = enable_fp16 ? sizeof(float16_t) : sizeof(float);
|
||||
|
@ -69,7 +68,8 @@ void RunTestCaseAvgPooling(const std::vector<int> &shape, void *input_data, void
|
|||
MS_LOG(ERROR) << "param create error.";
|
||||
return;
|
||||
}
|
||||
InitAvgPoolingParam(param);
|
||||
InitPoolingParam(param);
|
||||
param->pool_mode_ = pool_mode;
|
||||
std::vector<int> input_shape = {n, h, w, c};
|
||||
auto tensor_x_ptr = std::make_unique<lite::Tensor>(TypeId(enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||
input_shape, schema::Format_NHWC);
|
||||
|
@ -88,14 +88,12 @@ void RunTestCaseAvgPooling(const std::vector<int> &shape, void *input_data, void
|
|||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto arith_kernel_ptr =
|
||||
std::make_unique<kernel::PoolingOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
auto arith_kernel = arith_kernel_ptr.release();
|
||||
auto arith_kernel = kernel::OpenCLKernelCreator<kernel::PoolingOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(param), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (arith_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "arith_kernel create error.";
|
||||
return;
|
||||
}
|
||||
arith_kernel->Init();
|
||||
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
|
@ -127,7 +125,7 @@ void RunTestCaseAvgPooling(const std::vector<int> &shape, void *input_data, void
|
|||
MS_LOG(INFO) << "Test AvgPool2d passed";
|
||||
}
|
||||
|
||||
TEST_F(TestAvgPoolingOpenCL, AvgPoolingFp32) {
|
||||
TEST_F(TestPoolingOpenCL, AvgPoolingFp32) {
|
||||
int n = 1;
|
||||
int h = 2;
|
||||
int w = 2;
|
||||
|
@ -139,10 +137,10 @@ TEST_F(TestAvgPoolingOpenCL, AvgPoolingFp32) {
|
|||
8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f};
|
||||
std::vector<float> output_data = {6.0f, 7.0f, 8.0f, 9.0f};
|
||||
|
||||
RunTestCaseAvgPooling(shape, input_data.data(), output_data.data(), false);
|
||||
RunTestCasePooling(shape, input_data.data(), output_data.data(), false, PoolMode_AvgPool);
|
||||
}
|
||||
|
||||
TEST_F(TestAvgPoolingOpenCL, AvgPoolingFp16) {
|
||||
TEST_F(TestPoolingOpenCL, AvgPoolingFp16) {
|
||||
int n = 1;
|
||||
int h = 2;
|
||||
int w = 2;
|
||||
|
@ -154,6 +152,36 @@ TEST_F(TestAvgPoolingOpenCL, AvgPoolingFp16) {
|
|||
8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f};
|
||||
std::vector<float16_t> output_data = {6.0f, 7.0f, 8.0f, 9.0f};
|
||||
|
||||
RunTestCaseAvgPooling(shape, input_data.data(), output_data.data(), true);
|
||||
RunTestCasePooling(shape, input_data.data(), output_data.data(), true, PoolMode_AvgPool);
|
||||
}
|
||||
|
||||
TEST_F(TestPoolingOpenCL, MaxPoolingFp32) {
|
||||
int n = 1;
|
||||
int h = 2;
|
||||
int w = 2;
|
||||
int c = 4;
|
||||
int oh = 1;
|
||||
int ow = 1;
|
||||
std::vector<int> shape = {n, h, w, c, oh, ow};
|
||||
std::vector<float> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f,
|
||||
8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f};
|
||||
std::vector<float> output_data = {12.0f, 13.0f, 14.0f, 15.0f};
|
||||
|
||||
RunTestCasePooling(shape, input_data.data(), output_data.data(), false, PoolMode_MaxPool);
|
||||
}
|
||||
|
||||
TEST_F(TestPoolingOpenCL, MaxPoolingFp16) {
|
||||
int n = 1;
|
||||
int h = 2;
|
||||
int w = 2;
|
||||
int c = 4;
|
||||
int oh = 1;
|
||||
int ow = 1;
|
||||
std::vector<int> shape = {n, h, w, c, oh, ow};
|
||||
std::vector<float16_t> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f,
|
||||
8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f};
|
||||
std::vector<float16_t> output_data = {12.0f, 13.0f, 14.0f, 15.0f};
|
||||
|
||||
RunTestCasePooling(shape, input_data.data(), output_data.data(), true, PoolMode_MaxPool);
|
||||
}
|
||||
} // namespace mindspore
|
|
@ -75,14 +75,12 @@ void RunTestCaseReduce(const std::vector<int> &shape, void *input_data, void *ou
|
|||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto arith_kernel_ptr =
|
||||
std::make_unique<kernel::ReduceOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
auto arith_kernel = arith_kernel_ptr.release();
|
||||
auto arith_kernel = kernel::OpenCLKernelCreator<kernel::ReduceOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(param), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (arith_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "arith_kernel create error.";
|
||||
return;
|
||||
}
|
||||
arith_kernel->Init();
|
||||
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
|
|
|
@ -54,13 +54,12 @@ void RunTestCaseReshape(const std::vector<int> &shape_in, const std::vector<int>
|
|||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto arith_kernel_ptr = std::make_unique<kernel::ReshapeOpenCLKernel>(nullptr, inputs, outputs);
|
||||
auto arith_kernel = arith_kernel_ptr.release();
|
||||
auto arith_kernel = kernel::OpenCLKernelCreator<kernel::ReshapeOpenCLKernel>(inputs, outputs, nullptr, nullptr,
|
||||
kernel::KernelKey(), nullptr);
|
||||
if (arith_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "arith_kernel create error.";
|
||||
return;
|
||||
}
|
||||
arith_kernel->Init();
|
||||
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
|
|
|
@ -69,14 +69,12 @@ void RunTestCaseResize(const std::vector<int> &shape, void *input_data, void *ou
|
|||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto arith_kernel_ptr =
|
||||
std::make_unique<kernel::ResizeOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
auto arith_kernel = arith_kernel_ptr.release();
|
||||
auto arith_kernel = kernel::OpenCLKernelCreator<kernel::ResizeOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(param), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (arith_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "arith_kernel create error.";
|
||||
return;
|
||||
}
|
||||
arith_kernel->Init();
|
||||
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
|
|
|
@ -75,14 +75,12 @@ void RunTestCaseSoftmax(const std::vector<int> &shape, void *input_data, void *o
|
|||
return;
|
||||
}
|
||||
opParameter->axis_ = axis;
|
||||
auto arith_kernel_ptr =
|
||||
std::make_unique<kernel::SoftmaxOpenCLKernel>(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
auto arith_kernel = arith_kernel_ptr.release();
|
||||
auto arith_kernel = kernel::OpenCLKernelCreator<kernel::SoftmaxOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(opParameter), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (arith_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "arith_kernel create error.";
|
||||
return;
|
||||
}
|
||||
arith_kernel->Init();
|
||||
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
|
|
|
@ -67,14 +67,12 @@ void RunTestTranspose(const std::vector<int> &shape, void *input_data, void *out
|
|||
}
|
||||
std::vector<lite::Tensor *> inputs{tensor_x};
|
||||
std::vector<lite::Tensor *> outputs{tensor_out};
|
||||
auto arith_kernel_ptr =
|
||||
std::make_unique<kernel::TransposeOpenCLKernel>(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
auto arith_kernel = arith_kernel_ptr.release();
|
||||
auto arith_kernel = kernel::OpenCLKernelCreator<kernel::TransposeOpenCLKernel>(
|
||||
inputs, outputs, reinterpret_cast<OpParameter *>(param), nullptr, kernel::KernelKey(), nullptr);
|
||||
if (arith_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "arith_kernel create error.";
|
||||
return;
|
||||
}
|
||||
arith_kernel->Init();
|
||||
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
|
|
Loading…
Reference in New Issue