forked from mindspore-Ecosystem/mindspore
!8774 modify api example
From: @lijiaqi0612 Reviewed-by: @youui,@liangchenghui Signed-off-by: @liangchenghui
This commit is contained in:
commit
d6eac77ffd
|
@ -383,7 +383,7 @@ class SoftmaxCrossEntropyWithLogits(GraphKernel):
|
|||
Sets input logits as `X`, input label as `Y`, output as `loss`. Then,
|
||||
|
||||
.. math::
|
||||
p_{ij} = softmax(X_{ij}) = \frac{exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}
|
||||
p_{ij} = softmax(X_{ij}) = \frac{\exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}
|
||||
|
||||
.. math::
|
||||
loss_{ij} = -\sum_j{Y_{ij} * ln(p_{ij})}
|
||||
|
@ -666,7 +666,7 @@ class LogSoftmax(GraphKernel):
|
|||
the Log Softmax function is shown as follows:
|
||||
|
||||
.. math::
|
||||
\text{output}(x_i) = \log \left(\frac{exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
|
||||
\text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
|
||||
|
||||
where :math:`N` is the length of the Tensor.
|
||||
|
||||
|
@ -674,7 +674,7 @@ class LogSoftmax(GraphKernel):
|
|||
axis (int): The axis to do the Log softmax operation. Default: -1.
|
||||
|
||||
Inputs:
|
||||
logits (Tensor): The input of Log Softmax.
|
||||
- **logits** (Tensor) - The input of Log Softmax.
|
||||
|
||||
Outputs:
|
||||
Tensor, with the same type and shape as the logits.
|
||||
|
|
|
@ -127,7 +127,7 @@ def _make_axis_range(start, end):
|
|||
|
||||
class EmbeddingLookup(Cell):
|
||||
r"""
|
||||
Returns a slice of input tensor based on the specified indices.
|
||||
Returns a slice of the input tensor based on the specified indices.
|
||||
|
||||
Note:
|
||||
When 'target' is set to 'CPU', this module will use
|
||||
|
|
|
@ -22,7 +22,7 @@ class Exp(PowerTransform):
|
|||
This Bijector performs the operation:
|
||||
|
||||
.. math::
|
||||
Y = exp(x).
|
||||
Y = \exp(x).
|
||||
|
||||
Args:
|
||||
name (str): The name of the Bijector. Default: 'Exp'.
|
||||
|
|
|
@ -24,7 +24,7 @@ Examples:
|
|||
>>> import mindspore.ops as ops
|
||||
|
||||
Note:
|
||||
- The Primitive operators in operations need to be used after instantiation.
|
||||
- The Primitive operators in operations need to be instantiated before being used.
|
||||
- The composite operators are the pre-defined combination of operators.
|
||||
- The functional operators are the pre-instantiated Primitive operators, which can be used directly as a function.
|
||||
- For functional operators usage, please refer to
|
||||
|
|
|
@ -352,7 +352,7 @@ class GradOperation(GradOperation_):
|
|||
|
||||
class MultitypeFuncGraph(MultitypeFuncGraph_):
|
||||
"""
|
||||
Generate overloaded functions.
|
||||
Generates overloaded functions.
|
||||
|
||||
MultitypeFuncGraph is a class used to generate overloaded functions, considering different types as inputs.
|
||||
Initialize an `MultitypeFuncGraph` object with name, and use `register` with input types as the decorator
|
||||
|
|
|
@ -171,11 +171,11 @@ def TensorDot(x1, x2, axes):
|
|||
axes = 2 is the same as axes = ((0,1),(1,2)) where length of input shape is 3 for both `a` and `b`
|
||||
|
||||
Inputs:
|
||||
- **x1** (Tensor): First tensor in TensorDot op with datatype float16 or float32
|
||||
- **x2** (Tensor): Second tensor in TensorDot op with datatype float16 or float32
|
||||
- **axes** (Union[int, tuple(int), tuple(tuple(int)), list(list(int))]): Single value or
|
||||
tuple/list of length 2 with dimensions specified for `a` and `b` each. If single value `N` passed,
|
||||
automatically picks up first N dims from `a` input shape and last N dims from `b` input shape.
|
||||
- **x1** (Tensor) - First tensor in TensorDot op with datatype float16 or float32
|
||||
- **x2** (Tensor) - Second tensor in TensorDot op with datatype float16 or float32
|
||||
- **axes** (Union[int, tuple(int), tuple(tuple(int)), list(list(int))]) - Single value or
|
||||
tuple/list of length 2 with dimensions specified for `a` and `b` each. If single value `N` passed,
|
||||
automatically picks up first N dims from `a` input shape and last N dims from `b` input shape.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape of the output tensor is :math:`(N + M)`. Where :math:`N` and :math:`M` are the free axes not
|
||||
|
|
|
@ -342,7 +342,7 @@ class AiCPURegOp(RegOp):
|
|||
|
||||
|
||||
class TBERegOp(RegOp):
|
||||
"""Class for TBE op info register."""
|
||||
"""Class for TBE operator information register."""
|
||||
|
||||
def __init__(self, op_name):
|
||||
super(TBERegOp, self).__init__(op_name)
|
||||
|
|
|
@ -187,7 +187,7 @@ class ExpandDims(PrimitiveWithInfer):
|
|||
|
||||
class DType(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns the data type of input tensor as mindspore.dtype.
|
||||
Returns the data type of the input tensor as mindspore.dtype.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -219,7 +219,7 @@ class DType(PrimitiveWithInfer):
|
|||
|
||||
class SameTypeShape(PrimitiveWithInfer):
|
||||
"""
|
||||
Checks whether data type and shape of two tensors are the same.
|
||||
Checks whether the data type and shape of two tensors are the same.
|
||||
|
||||
Raises:
|
||||
TypeError: If the data types of two tensors are not the same.
|
||||
|
@ -344,7 +344,7 @@ class Cast(PrimitiveWithInfer):
|
|||
|
||||
class IsSubClass(PrimitiveWithInfer):
|
||||
"""
|
||||
Checks whether one type is subtraction class of another type.
|
||||
Checks whether this type is a sub-class of another type.
|
||||
|
||||
Inputs:
|
||||
- **sub_type** (mindspore.dtype) - The type to be checked. Only constant value is allowed.
|
||||
|
@ -427,7 +427,7 @@ class IsInstance(PrimitiveWithInfer):
|
|||
|
||||
class Reshape(PrimitiveWithInfer):
|
||||
"""
|
||||
Reshapes input tensor with the same values based on a given shape tuple.
|
||||
Reshapes the input tensor with the same values based on a given shape tuple.
|
||||
|
||||
Raises:
|
||||
ValueError: Given a shape tuple, if it has several -1; or if the product
|
||||
|
@ -525,7 +525,7 @@ class Reshape(PrimitiveWithInfer):
|
|||
|
||||
class Shape(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns the shape of input tensor.
|
||||
Returns the shape of the input tensor.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -559,7 +559,7 @@ class Shape(PrimitiveWithInfer):
|
|||
|
||||
class DynamicShape(Primitive):
|
||||
"""
|
||||
Returns the shape of input tensor.
|
||||
Returns the shape of the input tensor.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -651,7 +651,7 @@ class Squeeze(PrimitiveWithInfer):
|
|||
|
||||
class Transpose(PrimitiveWithCheck):
|
||||
"""
|
||||
Permutes the dimensions of input tensor according to input permutation.
|
||||
Permutes the dimensions of the input tensor according to input permutation.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -723,7 +723,7 @@ class Unique(Primitive):
|
|||
|
||||
class GatherV2(PrimitiveWithCheck):
|
||||
"""
|
||||
Returns a slice of input tensor based on the specified indices and axis.
|
||||
Returns a slice of the input tensor based on the specified indices and axis.
|
||||
|
||||
Inputs:
|
||||
- **input_params** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -802,7 +802,7 @@ class SparseGatherV2(GatherV2):
|
|||
|
||||
class Padding(PrimitiveWithInfer):
|
||||
"""
|
||||
Extends the last dimension of input tensor from 1 to pad_dim_size, by filling with 0.
|
||||
Extends the last dimension of the input tensor from 1 to pad_dim_size, by filling with 0.
|
||||
|
||||
Args:
|
||||
pad_dim_size (int): The value of the last dimension of x to be extended, which must be positive.
|
||||
|
@ -848,7 +848,7 @@ class Padding(PrimitiveWithInfer):
|
|||
|
||||
class UniqueWithPad(PrimitiveWithInfer):
|
||||
"""
|
||||
Return unique elements and relative indexes in 1-D tensor, fill with pad num.
|
||||
Returns unique elements and relative indexes in 1-D tensor, filled with padding num.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The tensor need to be unique. Must be 1-D vector with types: int32, int64.
|
||||
|
@ -889,7 +889,7 @@ class UniqueWithPad(PrimitiveWithInfer):
|
|||
|
||||
class Split(PrimitiveWithInfer):
|
||||
"""
|
||||
Splits input tensor into output_num of tensors along the given axis and output numbers.
|
||||
Splits the input tensor into output_num of tensors along the given axis and output numbers.
|
||||
|
||||
Args:
|
||||
axis (int): Index of the split position. Default: 0.
|
||||
|
@ -1032,7 +1032,7 @@ class TruncatedNormal(PrimitiveWithInfer):
|
|||
|
||||
class Size(PrimitiveWithInfer):
|
||||
r"""
|
||||
Returns the elements count size of a tensor.
|
||||
Returns the size of a tensor.
|
||||
|
||||
Returns an int scalar representing the elements size of input, the total number of elements in the tensor.
|
||||
|
||||
|
@ -1363,7 +1363,7 @@ class ScalarToArray(PrimitiveWithInfer):
|
|||
|
||||
class ScalarToTensor(PrimitiveWithInfer):
|
||||
"""
|
||||
Converts a scalar to a `Tensor`, and convert data type to specified type.
|
||||
Converts a scalar to a `Tensor`, and converts the data type to the specified type.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Union[int, float]) - The input is a scalar. Only constant value is allowed.
|
||||
|
@ -1471,7 +1471,7 @@ class InvertPermutation(PrimitiveWithInfer):
|
|||
|
||||
class Argmax(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns the indices of the max value of a tensor across the axis.
|
||||
Returns the indices of the maximum value of a tensor across the axis.
|
||||
|
||||
If the shape of input tensor is :math:`(x_1, ..., x_N)`, the shape of the output tensor will be
|
||||
:math:`(x_1, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
|
||||
|
@ -1523,7 +1523,7 @@ class Argmax(PrimitiveWithInfer):
|
|||
|
||||
class Argmin(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns the indices of the min value of a tensor across the axis.
|
||||
Returns the indices of the minimum value of a tensor across the axis.
|
||||
|
||||
If the shape of input tensor is :math:`(x_1, ..., x_N)`, the shape of the output tensor is
|
||||
:math:`(x_1, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
|
||||
|
@ -1630,7 +1630,7 @@ class ArgMaxWithValue(PrimitiveWithInfer):
|
|||
|
||||
class ArgMinWithValue(PrimitiveWithInfer):
|
||||
"""
|
||||
Calculates the minimum value with corresponding index, return indices and values.
|
||||
Calculates the minimum value with corresponding index, and returns indices and values.
|
||||
|
||||
Calculates the minimum value along with the given axis for the input tensor. It returns the minimum values and
|
||||
indices.
|
||||
|
@ -1770,7 +1770,7 @@ class Tile(PrimitiveWithInfer):
|
|||
|
||||
class UnsortedSegmentSum(PrimitiveWithInfer):
|
||||
r"""
|
||||
Computes the sum along segments of a tensor.
|
||||
Computes the sum of a tensor along segments.
|
||||
|
||||
Calculates a tensor such that :math:`\text{output}[i] = \sum_{segment\_ids[j] == i} \text{data}[j, \ldots]`, where
|
||||
:math:`j` is a tuple describing the index of element in data. `segment_ids` selects which elements in data to sum
|
||||
|
@ -1853,7 +1853,7 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
|
|||
|
||||
class UnsortedSegmentMin(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes the minimum along segments of a tensor.
|
||||
Computes the minimum of a tensor along segments.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -1971,7 +1971,7 @@ class UnsortedSegmentMax(PrimitiveWithInfer):
|
|||
|
||||
class UnsortedSegmentProd(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes the product along segments of a tensor.
|
||||
Computes the product of a tensor along segments.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -2029,9 +2029,9 @@ class UnsortedSegmentProd(PrimitiveWithInfer):
|
|||
|
||||
class Concat(PrimitiveWithInfer):
|
||||
r"""
|
||||
Concats tensor in specified axis.
|
||||
Connect tensor in the specified axis.
|
||||
|
||||
Concats input tensors along with the given axis.
|
||||
Connect input tensors along with the given axis.
|
||||
|
||||
Note:
|
||||
The input data is a tuple of tensors. These tensors have the same rank `R`. Set the given axis as `m`, and
|
||||
|
@ -2392,7 +2392,7 @@ class ReverseV2(PrimitiveWithInfer):
|
|||
|
||||
class Rint(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns element-wise integer closest to x.
|
||||
Returns an integer that is closest to x element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The target tensor, which must be one of the following types:
|
||||
|
@ -2932,7 +2932,7 @@ class ScatterNd(PrimitiveWithInfer):
|
|||
|
||||
class ResizeNearestNeighbor(PrimitiveWithInfer):
|
||||
r"""
|
||||
Resizes the input tensor by using nearest neighbor algorithm.
|
||||
Resizes the input tensor by using the nearest neighbor algorithm.
|
||||
|
||||
Resizes the input tensor to a given size by using the nearest neighbor algorithm. The nearest
|
||||
neighbor algorithm selects the value of the nearest point and does not consider the
|
||||
|
@ -3022,7 +3022,7 @@ class GatherNd(PrimitiveWithInfer):
|
|||
|
||||
class TensorScatterUpdate(PrimitiveWithInfer):
|
||||
"""
|
||||
Updates tensor value using given values, along with the input indices.
|
||||
Updates tensor values using given values, along with the input indices.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The target tensor. The dimension of input_x must be equal to indices.shape[-1].
|
||||
|
@ -3068,7 +3068,7 @@ class TensorScatterUpdate(PrimitiveWithInfer):
|
|||
|
||||
class ScatterUpdate(_ScatterOp_Dynamic):
|
||||
"""
|
||||
Updates tensor value by using input indices and value.
|
||||
Updates tensor values by using input indices and value.
|
||||
|
||||
Using given values to update tensor value, along with the input indices.
|
||||
|
||||
|
@ -3115,7 +3115,7 @@ class ScatterUpdate(_ScatterOp_Dynamic):
|
|||
|
||||
class ScatterNdUpdate(_ScatterNdOp):
|
||||
"""
|
||||
Updates tensor value by using input indices and value.
|
||||
Updates tensor values by using input indices and value.
|
||||
|
||||
Using given values to update tensor value, along with the input indices.
|
||||
|
||||
|
@ -3165,7 +3165,7 @@ class ScatterNdUpdate(_ScatterNdOp):
|
|||
|
||||
class ScatterMax(_ScatterOp):
|
||||
"""
|
||||
Updates the value of the input tensor through the max operation.
|
||||
Updates the value of the input tensor through the maximum operation.
|
||||
|
||||
Using given values to update tensor value through the max operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
@ -3210,7 +3210,7 @@ class ScatterMax(_ScatterOp):
|
|||
|
||||
class ScatterMin(_ScatterOp):
|
||||
"""
|
||||
Updates the value of the input tensor through the min operation.
|
||||
Updates the value of the input tensor through the minimum operation.
|
||||
|
||||
Using given values to update tensor value through the min operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
@ -3249,7 +3249,7 @@ class ScatterMin(_ScatterOp):
|
|||
|
||||
class ScatterAdd(_ScatterOp_Dynamic):
|
||||
"""
|
||||
Updates the value of the input tensor through the add operation.
|
||||
Updates the value of the input tensor through the addition operation.
|
||||
|
||||
Using given values to update tensor value through the add operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
@ -3333,7 +3333,7 @@ class ScatterSub(_ScatterOp):
|
|||
|
||||
class ScatterMul(_ScatterOp):
|
||||
"""
|
||||
Updates the value of the input tensor through the mul operation.
|
||||
Updates the value of the input tensor through the multiply operation.
|
||||
|
||||
Using given values to update tensor value through the mul operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
@ -3372,7 +3372,7 @@ class ScatterMul(_ScatterOp):
|
|||
|
||||
class ScatterDiv(_ScatterOp):
|
||||
"""
|
||||
Updates the value of the input tensor through the div operation.
|
||||
Updates the value of the input tensor through the divide operation.
|
||||
|
||||
Using given values to update tensor value through the div operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
@ -3411,7 +3411,7 @@ class ScatterDiv(_ScatterOp):
|
|||
|
||||
class ScatterNdAdd(_ScatterNdOp):
|
||||
"""
|
||||
Applies sparse addition to individual values or slices in a Tensor.
|
||||
Applies sparse addition to individual values or slices in a tensor.
|
||||
|
||||
Using given values to update tensor value through the add operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
@ -3449,7 +3449,7 @@ class ScatterNdAdd(_ScatterNdOp):
|
|||
|
||||
class ScatterNdSub(_ScatterNdOp):
|
||||
"""
|
||||
Applies sparse subtraction to individual values or slices in a Tensor.
|
||||
Applies sparse subtraction to individual values or slices in a tensor.
|
||||
|
||||
Using given values to update tensor value through the subtraction operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
@ -3487,7 +3487,7 @@ class ScatterNdSub(_ScatterNdOp):
|
|||
|
||||
class ScatterNonAliasingAdd(_ScatterNdOp):
|
||||
"""
|
||||
Applies sparse addition to input using individual values or slices.
|
||||
Applies sparse addition to the input using individual values or slices.
|
||||
|
||||
Using given values to update tensor value through the add operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
@ -3652,7 +3652,7 @@ class DepthToSpace(PrimitiveWithInfer):
|
|||
|
||||
class SpaceToBatch(PrimitiveWithInfer):
|
||||
r"""
|
||||
Divides spatial dimensions into blocks and combine the block size with the original batch.
|
||||
Divides spatial dimensions into blocks and combines the block size with the original batch.
|
||||
|
||||
This operation will divide spatial dimensions (H, W) into blocks with `block_size`, the output tensor's H and W
|
||||
dimension is the corresponding number of blocks after division. The output tensor's batch dimension is the
|
||||
|
@ -3810,7 +3810,7 @@ class BatchToSpace(PrimitiveWithInfer):
|
|||
|
||||
class SpaceToBatchND(PrimitiveWithInfer):
|
||||
r"""
|
||||
Divides spatial dimensions into blocks and combine the block size with the original batch.
|
||||
Divides spatial dimensions into blocks and combines the block size with the original batch.
|
||||
|
||||
This operation will divide spatial dimensions (H, W) into blocks with block_shape, the output tensor's H and W
|
||||
dimension is the corresponding number of blocks after division. The output tensor's batch dimension is the
|
||||
|
@ -3910,7 +3910,7 @@ class SpaceToBatchND(PrimitiveWithInfer):
|
|||
|
||||
class BatchToSpaceND(PrimitiveWithInfer):
|
||||
r"""
|
||||
Divides batch dimension with blocks and interleave these blocks back into spatial dimensions.
|
||||
Divides batch dimension with blocks and interleaves these blocks back into spatial dimensions.
|
||||
|
||||
This operation will divide batch dimension N into blocks with block_shape, the output tensor's N dimension
|
||||
is the corresponding number of blocks after division. The output tensor's H, W dimension is product of original H, W
|
||||
|
|
|
@ -25,7 +25,7 @@ from ..primitive import PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_regist
|
|||
|
||||
class ReduceOp:
|
||||
"""
|
||||
Operation options for reduce tensors.
|
||||
Operation options for reducing tensors.
|
||||
|
||||
There are four kinds of operation options, "SUM", "MAX", "MIN", and "PROD".
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
|
|||
|
||||
class ControlDepend(Primitive):
|
||||
"""
|
||||
Adds control dependency relation between source and destination operation.
|
||||
Adds control dependency relation between source and destination operations.
|
||||
|
||||
In many cases, we need to control the execution order of operations. ControlDepend is designed for this.
|
||||
ControlDepend will instruct the execution engine to run the operations in a specific order. ControlDepend
|
||||
|
|
|
@ -84,7 +84,7 @@ class ScalarSummary(PrimitiveWithInfer):
|
|||
|
||||
class ImageSummary(PrimitiveWithInfer):
|
||||
"""
|
||||
Outputs image tensor to protocol buffer through image summary operator.
|
||||
Outputs the image tensor to protocol buffer through image summary operator.
|
||||
|
||||
Inputs:
|
||||
- **name** (str) - The name of the input variable, it must not be an empty string.
|
||||
|
@ -167,7 +167,7 @@ class TensorSummary(PrimitiveWithInfer):
|
|||
|
||||
class HistogramSummary(PrimitiveWithInfer):
|
||||
"""
|
||||
Outputs tensor to protocol buffer through histogram summary operator.
|
||||
Outputs the tensor to protocol buffer through histogram summary operator.
|
||||
|
||||
Inputs:
|
||||
- **name** (str) - The name of the input variable.
|
||||
|
@ -209,7 +209,7 @@ class HistogramSummary(PrimitiveWithInfer):
|
|||
|
||||
class InsertGradientOf(PrimitiveWithInfer):
|
||||
"""
|
||||
Attaches callback to graph node that will be invoked on the node's gradient.
|
||||
Attaches callback to the graph node that will be invoked on the node's gradient.
|
||||
|
||||
Args:
|
||||
f (Function): MindSpore's Function. Callback function.
|
||||
|
@ -325,7 +325,7 @@ class HookBackward(PrimitiveWithInfer):
|
|||
|
||||
class Print(PrimitiveWithInfer):
|
||||
"""
|
||||
Outputs tensor or string to stdout.
|
||||
Outputs the tensor or string to stdout.
|
||||
|
||||
Note:
|
||||
In pynative mode, please use python print function.
|
||||
|
@ -368,7 +368,7 @@ class Print(PrimitiveWithInfer):
|
|||
|
||||
class Assert(PrimitiveWithInfer):
|
||||
"""
|
||||
Asserts that the given condition is true.
|
||||
Asserts that the given condition is True.
|
||||
If input condition evaluates to false, print the list of tensor in data.
|
||||
|
||||
Args:
|
||||
|
|
|
@ -23,7 +23,7 @@ from ..primitive import prim_attr_register, PrimitiveWithInfer
|
|||
|
||||
class ScalarCast(PrimitiveWithInfer):
|
||||
"""
|
||||
Cast the input scalar to another type.
|
||||
Casts the input scalar to another type.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (scalar) - The input scalar. Only constant value is allowed.
|
||||
|
|
|
@ -330,7 +330,7 @@ class _Reduce(PrimitiveWithInfer):
|
|||
|
||||
class ReduceMean(_Reduce):
|
||||
"""
|
||||
Reduce a dimension of a tensor by averaging all elements in the dimension.
|
||||
Reduces a dimension of a tensor by averaging all elements in the dimension.
|
||||
|
||||
The dtype of the tensor to be reduced is number.
|
||||
|
||||
|
@ -368,7 +368,7 @@ class ReduceMean(_Reduce):
|
|||
|
||||
class ReduceSum(_Reduce):
|
||||
"""
|
||||
Reduce a dimension of a tensor by summing all elements in the dimension.
|
||||
Reduces a dimension of a tensor by summing all elements in the dimension.
|
||||
|
||||
The dtype of the tensor to be reduced is number.
|
||||
|
||||
|
@ -411,7 +411,7 @@ class ReduceSum(_Reduce):
|
|||
|
||||
class ReduceAll(_Reduce):
|
||||
"""
|
||||
Reduce a dimension of a tensor by the "logical and" of all elements in the dimension.
|
||||
Reduces a dimension of a tensor by the "logicalAND" of all elements in the dimension.
|
||||
|
||||
The dtype of the tensor to be reduced is bool.
|
||||
|
||||
|
@ -453,7 +453,7 @@ class ReduceAll(_Reduce):
|
|||
|
||||
class ReduceAny(_Reduce):
|
||||
"""
|
||||
Reduce a dimension of a tensor by the "logical OR" of all elements in the dimension.
|
||||
Reduces a dimension of a tensor by the "logical OR" of all elements in the dimension.
|
||||
|
||||
The dtype of the tensor to be reduced is bool.
|
||||
|
||||
|
@ -495,7 +495,7 @@ class ReduceAny(_Reduce):
|
|||
|
||||
class ReduceMax(_Reduce):
|
||||
"""
|
||||
Reduce a dimension of a tensor by the maximum value in this dimension.
|
||||
Reduces a dimension of a tensor by the maximum value in this dimension.
|
||||
|
||||
The dtype of the tensor to be reduced is number.
|
||||
|
||||
|
@ -543,7 +543,7 @@ class ReduceMax(_Reduce):
|
|||
|
||||
class ReduceMin(_Reduce):
|
||||
"""
|
||||
Reduce a dimension of a tensor by the minimum value in the dimension.
|
||||
Reduces a dimension of a tensor by the minimum value in the dimension.
|
||||
|
||||
The dtype of the tensor to be reduced is number.
|
||||
|
||||
|
@ -582,7 +582,7 @@ class ReduceMin(_Reduce):
|
|||
|
||||
class ReduceProd(_Reduce):
|
||||
"""
|
||||
Reduce a dimension of a tensor by multiplying all elements in the dimension.
|
||||
Reduces a dimension of a tensor by multiplying all elements in the dimension.
|
||||
|
||||
The dtype of the tensor to be reduced is number.
|
||||
|
||||
|
@ -621,7 +621,7 @@ class ReduceProd(_Reduce):
|
|||
|
||||
class CumProd(PrimitiveWithInfer):
|
||||
"""
|
||||
Compute the cumulative product of the tensor x along axis.
|
||||
Computes the cumulative product of the tensor x along axis.
|
||||
|
||||
Args:
|
||||
exclusive (bool): If true, perform exclusive cumulative product. Default: False.
|
||||
|
@ -1893,7 +1893,7 @@ class Maximum(_MathBinaryOp):
|
|||
|
||||
class RealDiv(_MathBinaryOp):
|
||||
"""
|
||||
Divide the first input tensor by the second input tensor in floating-point type element-wise.
|
||||
Divides the first input tensor by the second input tensor in floating-point type element-wise.
|
||||
|
||||
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
The inputs must be two tensors or one tensor and one scalar.
|
||||
|
@ -1979,7 +1979,7 @@ class Div(_MathBinaryOp):
|
|||
|
||||
class DivNoNan(_MathBinaryOp):
|
||||
"""
|
||||
Computes a safe divide which returns 0 if the y is zero.
|
||||
Computes a safe divide and returns 0 if the y is zero.
|
||||
|
||||
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
The inputs must be two tensors or one tensor and one scalar.
|
||||
|
@ -2028,7 +2028,7 @@ class DivNoNan(_MathBinaryOp):
|
|||
|
||||
class FloorDiv(_MathBinaryOp):
|
||||
"""
|
||||
Divide the first input tensor by the second input tensor element-wise and round down to the closest integer.
|
||||
Divides the first input tensor by the second input tensor element-wise and round down to the closest integer.
|
||||
|
||||
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
The inputs must be two tensors or one tensor and one scalar.
|
||||
|
@ -2062,7 +2062,7 @@ class FloorDiv(_MathBinaryOp):
|
|||
|
||||
class TruncateDiv(_MathBinaryOp):
|
||||
"""
|
||||
Divide the first input tensor by the second input tensor element-wise for integer types, negative numbers will
|
||||
Divides the first input tensor by the second input tensor element-wise for integer types, negative numbers will
|
||||
round fractional quantities towards zero.
|
||||
|
||||
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
|
@ -2097,7 +2097,7 @@ class TruncateDiv(_MathBinaryOp):
|
|||
|
||||
class TruncateMod(_MathBinaryOp):
|
||||
"""
|
||||
Returns element-wise remainder of division.
|
||||
Returns the remainder of division element-wise.
|
||||
|
||||
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
The inputs must be two tensors or one tensor and one scalar.
|
||||
|
@ -2173,7 +2173,7 @@ class Mod(_MathBinaryOp):
|
|||
|
||||
class Floor(PrimitiveWithInfer):
|
||||
"""
|
||||
Round a tensor down to the closest integer element-wise.
|
||||
Rounds a tensor down to the closest integer element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor. Its element data type must be float.
|
||||
|
@ -2206,7 +2206,7 @@ class Floor(PrimitiveWithInfer):
|
|||
|
||||
class FloorMod(_MathBinaryOp):
|
||||
"""
|
||||
Compute the remainder of division element-wise.
|
||||
Computes the remainder of division element-wise.
|
||||
|
||||
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
The inputs must be two tensors or one tensor and one scalar.
|
||||
|
@ -2240,7 +2240,7 @@ class FloorMod(_MathBinaryOp):
|
|||
|
||||
class Ceil(PrimitiveWithInfer):
|
||||
"""
|
||||
Round a tensor up to the closest integer element-wise.
|
||||
Rounds a tensor up to the closest integer element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor. It's element data type must be float16 or float32.
|
||||
|
@ -2273,7 +2273,7 @@ class Ceil(PrimitiveWithInfer):
|
|||
|
||||
class Xdivy(_MathBinaryOp):
|
||||
"""
|
||||
Divide the first input tensor by the second input tensor element-wise. Returns zero when `x` is zero.
|
||||
Divides the first input tensor by the second input tensor element-wise. Returns zero when `x` is zero.
|
||||
|
||||
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
The inputs must be two tensors or one tensor and one scalar.
|
||||
|
@ -2310,7 +2310,7 @@ class Xdivy(_MathBinaryOp):
|
|||
|
||||
class Xlogy(_MathBinaryOp):
|
||||
"""
|
||||
Computes first input tensor multiplied by the logarithm of second input tensor element-wise.
|
||||
Computes the first input tensor multiplied by the logarithm of second input tensor element-wise.
|
||||
Returns zero when `x` is zero.
|
||||
|
||||
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
|
@ -2349,7 +2349,7 @@ class Xlogy(_MathBinaryOp):
|
|||
|
||||
class Acosh(PrimitiveWithInfer):
|
||||
"""
|
||||
Compute inverse hyperbolic cosine of the input element-wise.
|
||||
Computes inverse hyperbolic cosine of the input element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -2413,7 +2413,7 @@ class Cosh(PrimitiveWithInfer):
|
|||
|
||||
class Asinh(PrimitiveWithInfer):
|
||||
"""
|
||||
Compute inverse hyperbolic sine of the input element-wise.
|
||||
Computes inverse hyperbolic sine of the input element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -2446,7 +2446,7 @@ class Asinh(PrimitiveWithInfer):
|
|||
|
||||
class Sinh(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes hyperbolic sine of input element-wise.
|
||||
Computes hyperbolic sine of the input element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -2542,7 +2542,7 @@ class Equal(_LogicBinaryOp):
|
|||
|
||||
class ApproximateEqual(_LogicBinaryOp):
|
||||
"""
|
||||
Returns true if abs(x1-x2) is smaller than tolerance element-wise, otherwise false.
|
||||
Returns True if abs(x1-x2) is smaller than tolerance element-wise, otherwise False.
|
||||
|
||||
Inputs of `x1` and `x2` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
@ -2938,7 +2938,7 @@ class LogicalOr(_LogicBinaryOp):
|
|||
|
||||
class IsNan(PrimitiveWithInfer):
|
||||
"""
|
||||
Judge which elements are nan for each position.
|
||||
Determines which elements are NaN for each position.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
|
@ -2969,7 +2969,7 @@ class IsNan(PrimitiveWithInfer):
|
|||
|
||||
class IsInf(PrimitiveWithInfer):
|
||||
"""
|
||||
Judging which elements are inf or -inf for each position
|
||||
Determines which elements are inf or -inf for each position
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
|
@ -3000,7 +3000,7 @@ class IsInf(PrimitiveWithInfer):
|
|||
|
||||
class IsFinite(PrimitiveWithInfer):
|
||||
"""
|
||||
Judge which elements are finite for each position.
|
||||
Deternubes which elements are finite for each position.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
|
@ -3034,7 +3034,7 @@ class IsFinite(PrimitiveWithInfer):
|
|||
|
||||
class FloatStatus(PrimitiveWithInfer):
|
||||
"""
|
||||
Determine if the elements contain Not a Number(NaN), infinite or negative infinite. 0 for normal, 1 for overflow.
|
||||
Determines if the elements contain Not a Number(NaN), infinite or negative infinite. 0 for normal, 1 for overflow.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor. The data type must be float16 or float32.
|
||||
|
@ -3103,7 +3103,7 @@ class NPUAllocFloatStatus(PrimitiveWithInfer):
|
|||
|
||||
class NPUGetFloatStatus(PrimitiveWithInfer):
|
||||
"""
|
||||
Updates the flag which is the output tensor of `NPUAllocFloatStatus` with latest overflow status.
|
||||
Updates the flag which is the output tensor of `NPUAllocFloatStatus` with the latest overflow status.
|
||||
|
||||
The flag is a tensor whose shape is `(8,)` and data type is `mindspore.dtype.float32`.
|
||||
If the sum of the flag equals to 0, there is no overflow happened. If the sum of the flag is bigger than 0, there
|
||||
|
@ -3146,7 +3146,7 @@ class NPUGetFloatStatus(PrimitiveWithInfer):
|
|||
|
||||
class NPUClearFloatStatus(PrimitiveWithInfer):
|
||||
"""
|
||||
Clear the flag which stores the overflow status.
|
||||
Clears the flag which stores the overflow status.
|
||||
|
||||
Note:
|
||||
The flag is in the register on the `Ascend` device. It will be reset and can not be reused again after the
|
||||
|
@ -3226,7 +3226,7 @@ class Cos(PrimitiveWithInfer):
|
|||
|
||||
class ACos(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes arccosine of input element-wise.
|
||||
Computes arccosine of input tensors element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -3257,7 +3257,7 @@ class ACos(PrimitiveWithInfer):
|
|||
|
||||
class Sin(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes sine of input element-wise.
|
||||
Computes sine of the input element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -3290,7 +3290,7 @@ class Sin(PrimitiveWithInfer):
|
|||
|
||||
class Asin(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes arcsine of input element-wise.
|
||||
Computes arcsine of input tensors element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
@ -3323,7 +3323,7 @@ class Asin(PrimitiveWithInfer):
|
|||
|
||||
class NMSWithMask(PrimitiveWithInfer):
|
||||
"""
|
||||
Select some bounding boxes in descending order of score.
|
||||
Selects some bounding boxes in descending order of score.
|
||||
|
||||
Args:
|
||||
iou_threshold (float): Specifies the threshold of overlap boxes with respect to
|
||||
|
@ -3426,7 +3426,7 @@ class Abs(PrimitiveWithInfer):
|
|||
|
||||
class Sign(PrimitiveWithInfer):
|
||||
r"""
|
||||
Perform :math:`sign` on tensor element-wise.
|
||||
Performs sign on the tensor element-wise.
|
||||
|
||||
Note:
|
||||
.. math::
|
||||
|
@ -3633,7 +3633,7 @@ class Atan2(_MathBinaryOp):
|
|||
|
||||
class SquareSumAll(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns square sum all of a tensor element-wise
|
||||
Returns the square sum of a tensor element-wise
|
||||
|
||||
Inputs:
|
||||
- **input_x1** (Tensor) - The input tensor. The data type must be float16 or float32.
|
||||
|
@ -3902,7 +3902,7 @@ class Invert(PrimitiveWithInfer):
|
|||
|
||||
class Eps(PrimitiveWithInfer):
|
||||
"""
|
||||
Creates a tensor filled with `input_x` dtype minimum val.
|
||||
Creates a tensor filled with `input_x` dtype minimum value.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Input tensor. The data type must be float16 or float32.
|
||||
|
|
|
@ -174,7 +174,7 @@ class LogSoftmax(PrimitiveWithInfer):
|
|||
the Log Softmax function is shown as follows:
|
||||
|
||||
.. math::
|
||||
\text{output}(x_i) = \log \left(\frac{exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
|
||||
\text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
|
||||
|
||||
where :math:`N` is the length of the Tensor.
|
||||
|
||||
|
@ -293,7 +293,7 @@ class Softsign(PrimitiveWithInfer):
|
|||
|
||||
class ReLU(PrimitiveWithInfer):
|
||||
r"""
|
||||
Computes ReLU(Rectified Linear Unit) of input tensor element-wise.
|
||||
Computes ReLU (Rectified Linear Unit) of input tensors element-wise.
|
||||
|
||||
It returns :math:`\max(x,\ 0)` element-wise.
|
||||
|
||||
|
@ -330,7 +330,7 @@ class ReLU(PrimitiveWithInfer):
|
|||
|
||||
class ReLU6(PrimitiveWithInfer):
|
||||
r"""
|
||||
Computes ReLU(Rectified Linear Unit) upper bounded by 6 of input tensor element-wise.
|
||||
Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input tensors element-wise.
|
||||
|
||||
It returns :math:`\min(\max(0,x), 6)` element-wise.
|
||||
|
||||
|
@ -367,7 +367,7 @@ class ReLU6(PrimitiveWithInfer):
|
|||
|
||||
class ReLUV2(PrimitiveWithInfer):
|
||||
r"""
|
||||
Computes ReLU(Rectified Linear Unit) of input tensor element-wise.
|
||||
Computes ReLU (Rectified Linear Unit) of input tensors element-wise.
|
||||
|
||||
It returns :math:`\max(x,\ 0)` element-wise.
|
||||
|
||||
|
@ -435,7 +435,18 @@ class ReLUV2(PrimitiveWithInfer):
|
|||
|
||||
class Elu(PrimitiveWithInfer):
|
||||
r"""
|
||||
Computes exponential linear: `alpha * (exp(x) - 1)` if x < 0, `x` otherwise.
|
||||
Computes exponential linear:
|
||||
|
||||
if x < 0:
|
||||
|
||||
.. math::
|
||||
\text{x} = \alpha * (\exp(\text{x}) - 1)
|
||||
|
||||
if x >= 0:
|
||||
|
||||
.. math::
|
||||
\text{x} = \text{x}
|
||||
|
||||
The data type of input tensor must be float.
|
||||
|
||||
Args:
|
||||
|
@ -523,7 +534,7 @@ class Sigmoid(PrimitiveWithInfer):
|
|||
Computes Sigmoid of input element-wise. The Sigmoid function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{sigmoid}(x_i) = \frac{1}{1 + exp(-x_i)},
|
||||
\text{sigmoid}(x_i) = \frac{1}{1 + \exp(-x_i)},
|
||||
|
||||
where :math:`x_i` is the element of the input.
|
||||
|
||||
|
@ -640,7 +651,7 @@ class Tanh(PrimitiveWithInfer):
|
|||
|
||||
class FusedBatchNorm(Primitive):
|
||||
r"""
|
||||
FusedBatchNorm is a BatchNorm that moving mean and moving variance will be computed instead of being loaded.
|
||||
FusedBatchNorm is a BatchNorm. Moving mean and moving variance will be computed instead of being loaded.
|
||||
|
||||
Batch Normalization is widely used in convolutional networks. This operation applies
|
||||
Batch Normalization over input to avoid internal covariate shift as described in the
|
||||
|
@ -848,7 +859,7 @@ class FusedBatchNormEx(PrimitiveWithInfer):
|
|||
|
||||
class BNTrainingReduce(PrimitiveWithInfer):
|
||||
"""
|
||||
For BatchNorm operator, this operator update the moving averages for training and is used in conjunction with
|
||||
For the BatchNorm operation this operator update the moving averages for training and is used in conjunction with
|
||||
BNTrainingUpdate.
|
||||
|
||||
Inputs:
|
||||
|
@ -885,7 +896,7 @@ class BNTrainingReduce(PrimitiveWithInfer):
|
|||
|
||||
class BNTrainingUpdate(PrimitiveWithInfer):
|
||||
"""
|
||||
For BatchNorm operator, this operator update the moving averages for training and is used in conjunction with
|
||||
For the BatchNorm operation, this operator update the moving averages for training and is used in conjunction with
|
||||
BNTrainingReduce.
|
||||
|
||||
Args:
|
||||
|
@ -1508,7 +1519,7 @@ class MaxPool(_Pool):
|
|||
|
||||
class MaxPoolWithArgmax(_Pool):
|
||||
r"""
|
||||
Perform max pooling on the input Tensor and return both max values and indices.
|
||||
Performs max pooling on the input Tensor and returns both max values and indices.
|
||||
|
||||
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs
|
||||
regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
|
||||
|
@ -1915,7 +1926,7 @@ class SoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
|
|||
Sets input logits as `X`, input label as `Y`, output as `loss`. Then,
|
||||
|
||||
.. math::
|
||||
p_{ij} = softmax(X_{ij}) = \frac{exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}
|
||||
p_{ij} = softmax(X_{ij}) = \frac{\exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}
|
||||
|
||||
.. math::
|
||||
loss_{ij} = -\sum_j{Y_{ij} * ln(p_{ij})}
|
||||
|
@ -1966,7 +1977,7 @@ class SparseSoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
|
|||
Sets input logits as `X`, input label as `Y`, output as `loss`. Then,
|
||||
|
||||
.. math::
|
||||
p_{ij} = softmax(X_{ij}) = \frac{exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}
|
||||
p_{ij} = softmax(X_{ij}) = \frac{\exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}
|
||||
|
||||
.. math::
|
||||
loss_{ij} = \begin{cases} -ln(p_{ij}), &j = y_i \cr -ln(1 - p_{ij}), & j \neq y_i \end{cases}
|
||||
|
@ -2283,7 +2294,7 @@ class RNNTLoss(PrimitiveWithInfer):
|
|||
|
||||
class SGD(PrimitiveWithCheck):
|
||||
"""
|
||||
Computes stochastic gradient descent (optionally with momentum).
|
||||
Computes the stochastic gradient descent. Momentum is optional.
|
||||
|
||||
Nesterov momentum is based on the formula from On the importance of
|
||||
initialization and momentum in deep learning.
|
||||
|
@ -2775,7 +2786,7 @@ class DropoutDoMask(PrimitiveWithInfer):
|
|||
|
||||
class ResizeBilinear(PrimitiveWithInfer):
|
||||
r"""
|
||||
Resizes the image to certain size using bilinear interpolation.
|
||||
Resizes an image to a certain size using the bilinear interpolation.
|
||||
|
||||
The resizing only affects the lower two dimensions which represent the height and width. The input images
|
||||
can be represented by different data types, but the data types of output images are always float32.
|
||||
|
@ -3067,7 +3078,7 @@ class PReLU(PrimitiveWithInfer):
|
|||
|
||||
class LSTM(PrimitiveWithInfer):
|
||||
"""
|
||||
Performs the long short term memory(LSTM) on the input.
|
||||
Performs the Long Short-Term Memory (LSTM) on the input.
|
||||
|
||||
For detailed information, please refer to `nn.LSTM`.
|
||||
|
||||
|
@ -3227,7 +3238,7 @@ class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer):
|
|||
|
||||
class Pad(PrimitiveWithInfer):
|
||||
"""
|
||||
Pads input tensor according to the paddings.
|
||||
Pads the input tensor according to the paddings.
|
||||
|
||||
Args:
|
||||
paddings (tuple): The shape of parameter `paddings` is (N, 2). N is the rank of input data. All elements of
|
||||
|
@ -3367,7 +3378,7 @@ class MirrorPad(PrimitiveWithInfer):
|
|||
|
||||
class ROIAlign(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes Region of Interest (RoI) Align operator.
|
||||
Computes the Region of Interest (RoI) Align operator.
|
||||
|
||||
The operator computes the value of each sampling point by bilinear interpolation from the nearby grid points on the
|
||||
feature map. No quantization is performed on any coordinates involved in the RoI, its bins, or the sampling
|
||||
|
@ -3435,7 +3446,7 @@ class ROIAlign(PrimitiveWithInfer):
|
|||
|
||||
class Adam(PrimitiveWithInfer):
|
||||
r"""
|
||||
Updates gradients by Adaptive Moment Estimation (Adam) algorithm.
|
||||
Updates gradients by the Adaptive Moment Estimation (Adam) algorithm.
|
||||
|
||||
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
|
||||
|
||||
|
@ -3643,7 +3654,7 @@ class AdamNoUpdateParam(PrimitiveWithInfer):
|
|||
|
||||
class FusedSparseAdam(PrimitiveWithInfer):
|
||||
r"""
|
||||
Merges the duplicate value of the gradient and then updates parameters by Adaptive Moment Estimation (Adam)
|
||||
Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam)
|
||||
algorithm. This operator is used when the gradient is sparse.
|
||||
|
||||
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
|
||||
|
@ -3780,7 +3791,7 @@ class FusedSparseAdam(PrimitiveWithInfer):
|
|||
|
||||
class FusedSparseLazyAdam(PrimitiveWithInfer):
|
||||
r"""
|
||||
Merges the duplicate value of the gradient and then updates parameters by Adaptive Moment Estimation (Adam)
|
||||
Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (LazyAdam)
|
||||
algorithm. This operator is used when the gradient is sparse. The behavior is not equivalent to the
|
||||
original Adam algorithm, as only the current indices parameters will be updated.
|
||||
|
||||
|
@ -4815,7 +4826,7 @@ class SparseApplyAdagrad(PrimitiveWithInfer):
|
|||
|
||||
class SparseApplyAdagradV2(PrimitiveWithInfer):
|
||||
r"""
|
||||
Updates relevant entries according to the adagrad scheme.
|
||||
Updates relevant entries according to the adagrad scheme, one more epsilon attribute than SparseApplyAdagrad.
|
||||
|
||||
.. math::
|
||||
accum += grad * grad
|
||||
|
@ -5357,7 +5368,7 @@ class ApplyPowerSign(PrimitiveWithInfer):
|
|||
|
||||
class ApplyGradientDescent(PrimitiveWithInfer):
|
||||
r"""
|
||||
Updates relevant entries according to the following formula.
|
||||
Updates relevant entries according to the following.
|
||||
|
||||
.. math::
|
||||
var = var - \alpha * \delta
|
||||
|
@ -5521,7 +5532,7 @@ class ApplyProximalGradientDescent(PrimitiveWithInfer):
|
|||
|
||||
class LARSUpdate(PrimitiveWithInfer):
|
||||
"""
|
||||
Conducts lars (layer-wise adaptive rate scaling) update on the sum of squares of gradient.
|
||||
Conducts LARS (layer-wise adaptive rate scaling) update on the sum of squares of gradient.
|
||||
|
||||
Args:
|
||||
epsilon (float): Term added to the denominator to improve numerical stability. Default: 1e-05.
|
||||
|
@ -5800,7 +5811,8 @@ class SparseApplyFtrl(PrimitiveWithCheck):
|
|||
|
||||
class SparseApplyFtrlV2(PrimitiveWithInfer):
|
||||
"""
|
||||
Updates relevant entries according to the FTRL-proximal scheme.
|
||||
Updates relevant entries according to the FTRL-proximal scheme. This class has one more attribute, named
|
||||
l2_shrinkage, than class SparseApplyFtrl.
|
||||
|
||||
All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
@ -6362,7 +6374,7 @@ class DynamicRNN(PrimitiveWithInfer):
|
|||
|
||||
class InTopK(PrimitiveWithInfer):
|
||||
r"""
|
||||
Whether the targets are in the top `k` predictions.
|
||||
Determines whether the targets are in the top `k` predictions.
|
||||
|
||||
Args:
|
||||
k (int): Specifies the number of top elements to be used for computing precision.
|
||||
|
|
|
@ -287,7 +287,7 @@ class PrimitiveWithCheck(Primitive):
|
|||
|
||||
class PrimitiveWithInfer(Primitive):
|
||||
"""
|
||||
PrimitiveWithInfer is the base class of primitives in python defines functions for tracking inference in python.
|
||||
PrimitiveWithInfer is the base class of primitives in python and defines functions for tracking inference in python.
|
||||
|
||||
There are four method can be overide to define the infer logic of the primitive: __infer__(), infer_shape(),
|
||||
infer_dtype(), and infer_value(). If __infer__() is defined in primitive, the __infer__() has highest priority
|
||||
|
@ -464,8 +464,8 @@ def prim_attr_register(fn):
|
|||
|
||||
def constexpr(fn=None, get_instance=True, name=None):
|
||||
"""
|
||||
Make a PrimitiveWithInfer operator that can infer the value at compile time. We can use it to define a function to
|
||||
compute constant value using the constants in the constructor.
|
||||
Creates a PrimitiveWithInfer operator that can infer the value at compile time. We can use it to define a function
|
||||
to compute constant value using the constants in the constructor.
|
||||
|
||||
Args:
|
||||
fn (function): A `fn` use as the infer_value of the output operator.
|
||||
|
|
|
@ -37,7 +37,7 @@ Examples:
|
|||
|
||||
def get_vm_impl_fn(prim):
|
||||
"""
|
||||
Get the virtual implementation function by a primitive object or primitive name.
|
||||
Gets the virtual implementation function by a primitive object or primitive name.
|
||||
|
||||
Args:
|
||||
prim (Union[Primitive, str]): primitive object or name for operator register.
|
||||
|
|
Loading…
Reference in New Issue