rectification init

This commit is contained in:
lichenever 2020-08-27 15:11:02 +08:00
parent 49aa4b7686
commit d3e55b543e
31 changed files with 52 additions and 63 deletions

View File

@ -14,6 +14,7 @@
# ============================================================================
"""Communication management API"""
import os
from mindspore import context
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from ._comm_helper import Backend, _get_rank_helper, _get_size_helper, \
_get_world_rank_from_group_rank_helper, _get_group_rank_from_world_rank_helper, \
@ -45,7 +46,7 @@ class GlobalComm:
WORLD_COMM_GROUP = DEFAULT_WORLD_COMM_GROUP
def init(backend_name="hccl"):
def init(backend_name=None):
"""
Init distributed backend, e.g., hccl/nccl, it is required before communication service can be used.
@ -57,11 +58,20 @@ def init(backend_name="hccl"):
backend_name (str): Backend.
Raises:
TypeError: If backend name is not a string.
TypeError: If backen_name is not a string.
RuntimeError: If device target is invalid.
RuntimeError: If backend is invalid or distributed init fails.
"""
if MS_ROLE in ("MS_PSERVER", "MS_SCHED"):
return
if backend_name is None:
device_target = context.get_context("device_target")
if device_target == "Ascend":
backend_name = "hccl"
elif device_target == "GPU":
backend_name = "nccl"
else:
raise RuntimeError("Device target {} is not supported.".format(device_target))
if not isinstance(backend_name, str):
raise TypeError("Backend name must be a string, but got {}".format(type(backend_name)))

View File

@ -73,7 +73,7 @@ class AllReduce(PrimitiveWithInfer):
>>> import mindspore.nn as nn
>>> import mindspore.ops.operations as P
>>>
>>> init('nccl')
>>> init()
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
@ -136,7 +136,7 @@ class AllGather(PrimitiveWithInfer):
>>> from mindspore.communication import init
>>> from mindspore import Tensor
>>>
>>> init('nccl')
>>> init()
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
@ -246,7 +246,7 @@ class ReduceScatter(PrimitiveWithInfer):
>>> import mindspore.nn as nn
>>> import mindspore.ops.operations as P
>>>
>>> init('nccl')
>>> init()
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
@ -360,7 +360,7 @@ class Broadcast(PrimitiveWithInfer):
>>> import mindspore.nn as nn
>>> import mindspore.ops.operations as P
>>>
>>> init('nccl')
>>> init()
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()

View File

@ -81,7 +81,7 @@ if __name__ == '__main__':
mirror_mean=True)
init()
elif device_target == "GPU":
init("nccl")
init()
if device_num > 1:
context.reset_auto_parallel_context()

View File

@ -57,10 +57,7 @@ if __name__ == '__main__':
cfg = config_ascend if args_opt.platform == 'Ascend' else config_gpu
# init distributed
if args_opt.is_distributed:
if args_opt.platform == "Ascend":
init()
else:
init("nccl")
cfg.rank = get_rank()
cfg.group_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL

View File

@ -64,7 +64,7 @@ elif args_opt.device_target == "GPU":
context.set_context(mode=context.GRAPH_MODE,
device_target="GPU",
save_graphs=False)
init("nccl")
init()
context.set_auto_parallel_context(device_num=get_group_size(),
parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)

View File

@ -57,7 +57,7 @@ if args_opt.device_target == "Ascend":
device_target="Ascend",
device_id=device_id, save_graphs=False)
elif args_opt.device_target == "GPU":
init("nccl")
init()
context.set_auto_parallel_context(device_num=get_group_size(),
parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)

View File

@ -54,7 +54,7 @@ if args_opt.device_target == "GPU":
context.set_context(mode=context.GRAPH_MODE,
device_target="GPU",
save_graphs=False)
init("nccl")
init()
context.set_auto_parallel_context(device_num=get_group_size(),
parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)

View File

@ -38,7 +38,7 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target=
if target == "Ascend":
device_num, rank_id = _get_rank_info()
else:
init("nccl")
init()
rank_id = get_rank()
device_num = get_group_size()
@ -93,7 +93,7 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
if target == "Ascend":
device_num, rank_id = _get_rank_info()
else:
init("nccl")
init()
rank_id = get_rank()
device_num = get_group_size()

View File

@ -85,7 +85,7 @@ if __name__ == '__main__':
init()
# GPU target
else:
init("nccl")
init()
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
if args_opt.net == "resnet50":

View File

@ -46,7 +46,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
device_num = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
else:
init("nccl")
init()
rank_id = get_rank()
device_num = get_group_size()
@ -114,7 +114,7 @@ def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, targe
device_num = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
else:
init("nccl")
init()
rank_id = get_rank()
device_num = get_group_size()

View File

@ -40,7 +40,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
if target == "Ascend":
device_num, rank_id = _get_rank_info()
else:
init("nccl")
init()
rank_id = get_rank()
device_num = get_group_size()

View File

@ -106,7 +106,7 @@ if __name__ == '__main__':
init()
# GPU target
else:
init("nccl")
init()
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"

View File

@ -112,10 +112,7 @@ def test(cloud_args=None):
# init distributed
if args.is_distributed:
if args.platform == "Ascend":
init()
elif args.platform == "GPU":
init("nccl")
args.rank = get_rank()
args.group_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL

View File

@ -172,10 +172,7 @@ def train(cloud_args=None):
# init distributed
if args.is_distributed:
if args.platform == "Ascend":
init()
else:
init("nccl")
args.rank = get_rank()
args.group_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL

View File

@ -135,7 +135,7 @@ if __name__ == '__main__':
init()
context.set_context(device_id=args.device_id)
elif args.device_target == "GPU":
init("nccl")
init()
args.rank = get_rank()
args.group_size = get_group_size()

View File

@ -60,7 +60,7 @@ if __name__ == '__main__':
device_num = int(os.environ.get("RANK_SIZE"))
rank = int(os.environ.get("RANK_ID"))
else:
init('nccl')
init()
lr_scale = 0.5
device_num = get_group_size()
rank = get_rank()

View File

@ -70,11 +70,11 @@ def run_pretrain():
ckpt_save_dir = args_opt.save_checkpoint_path
if args_opt.distribute == "true":
if args_opt.device_target == 'Ascend':
D.init('hccl')
D.init()
device_num = args_opt.device_num
rank = args_opt.device_id % device_num
else:
D.init('nccl')
D.init()
device_num = D.get_group_size()
rank = D.get_rank()
ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(rank) + '/'

View File

@ -73,11 +73,11 @@ def run_pretrain():
ckpt_save_dir = args_opt.save_checkpoint_path
if args_opt.distribute == "true":
if args_opt.device_target == 'Ascend':
D.init('hccl')
D.init()
device_num = args_opt.device_num
rank = args_opt.device_id % device_num
else:
D.init('nccl')
D.init()
device_num = D.get_group_size()
rank = D.get_rank()
ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(rank) + '/'

View File

@ -227,9 +227,6 @@ def _build_training_pipeline(config: TransformerConfig,
def _setup_parallel_env(platform):
context.reset_auto_parallel_context()
if platform == "GPU":
MultiAscend.init("nccl")
else:
MultiAscend.init()
context.set_auto_parallel_context(
parallel_mode=ParallelMode.DATA_PARALLEL,

View File

@ -67,11 +67,11 @@ def run_general_distill():
if args_opt.distribute == "true":
if args_opt.device_target == 'Ascend':
D.init('hccl')
D.init()
device_num = args_opt.device_num
rank = args_opt.device_id % device_num
else:
D.init('nccl')
D.init()
device_num = D.get_group_size()
rank = D.get_rank()
save_ckpt_dir = save_ckpt_dir + '_ckpt_' + str(rank)

View File

@ -59,7 +59,7 @@ if __name__ == '__main__':
init()
rank_id = int(os.environ.get('RANK_ID'))
elif args_opt.device_target == "GPU":
init("nccl")
init()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=get_group_size(),

View File

@ -128,10 +128,7 @@ if __name__ == "__main__":
context.set_context(variable_memory_max_size="24GB")
context.set_context(enable_sparse=True)
set_multi_subgraphs()
if wide_deep_config.device_target == "Ascend":
init("hccl")
elif wide_deep_config.device_target == "GPU":
init("nccl")
init()
if wide_deep_config.host_device_mix == 1:
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, mirror_mean=True)
else:

View File

@ -122,10 +122,7 @@ if __name__ == "__main__":
wide_deep_config.argparse_init()
context.set_context(mode=context.GRAPH_MODE, device_target=wide_deep_config.device_target, save_graphs=True)
if wide_deep_config.device_target == "Ascend":
init("hccl")
elif wide_deep_config.device_target == "GPU":
init("nccl")
init()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
device_num=get_group_size())

View File

@ -119,10 +119,7 @@ if __name__ == "__main__":
wide_deep_config.argparse_init()
context.set_context(mode=context.GRAPH_MODE, device_target=wide_deep_config.device_target)
if wide_deep_config.device_target == "Ascend":
init("hccl")
elif wide_deep_config.device_target == "GPU":
init("nccl")
init()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
device_num=get_group_size())

View File

@ -24,7 +24,7 @@ from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
init('nccl')
init()
rank = get_rank()
size = get_group_size()
x = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)

View File

@ -24,7 +24,7 @@ from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
init('nccl')
init()
rank = get_rank()
size = get_group_size()
x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)

View File

@ -24,7 +24,7 @@ from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
init('nccl')
init()
rank = get_rank()
size = get_group_size()
x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)

View File

@ -25,7 +25,7 @@ from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
init('nccl')
init()
epoch = 5
total = 5000

View File

@ -24,7 +24,7 @@ from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
init('nccl')
init()
rank = get_rank()
size = get_group_size()
x = np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)

View File

@ -30,7 +30,7 @@ args, _ = parser.parse_known_args()
device_target = args.device_target
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
if device_target == "GPU":
init('nccl')
init()
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):

View File

@ -75,7 +75,7 @@ def test_dataset_iter_normal():
@pytest.mark.skipif('not context.get_context("enable_ge")')
def test_dataset_iter_ge():
init()
init("hccl")
dataset = get_dataset(32)
dataset_helper = DatasetHelper(dataset, dataset_sink_mode=True, sink_size=10)
count = 0
@ -87,7 +87,7 @@ def test_dataset_iter_ge():
@pytest.mark.skipif('context.get_context("enable_ge")')
def test_dataset_iter_ms_loop_sink():
init()
init("hccl")
context.set_context(enable_loop_sink=True)
dataset = get_dataset(32)
dataset_helper = DatasetHelper(dataset, dataset_sink_mode=True, sink_size=10)
@ -101,7 +101,7 @@ def test_dataset_iter_ms_loop_sink():
@pytest.mark.skipif('context.get_context("enable_ge")')
def test_dataset_iter_ms():
init()
init("hccl")
context.set_context(enable_loop_sink=False)
dataset = get_dataset(32)
DatasetHelper(dataset, dataset_sink_mode=True, sink_size=10)